學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

高中數(shù)學(xué)反證法例題

時間: 麗儀1102 分享

  反證法首先假設(shè)某命題不成立(即在原命題的題設(shè)下,結(jié)論不成立),然后推理出明顯矛盾的結(jié)果,從而下結(jié)論說假設(shè)不成立,原命題得證。下面由學(xué)習(xí)啦小編給你帶來關(guān)于高中數(shù)學(xué)反證法例題,希望對你有幫助!

  高中數(shù)學(xué)反證法例題一

  選擇題

  1.否定結(jié)論“至多有兩個解”的說法中,正確的是(  )

  A.有一個解

  B.有兩個解

  C.至少有三個解

  D.至少有兩個解

  [答案] C

  [解析] 在邏輯中“至多有n個”的否定是“至少有n+1個”,所以“至多有兩個解”的否定為“至少有三個解”,故應(yīng)選C.

  2.否定“自然數(shù)a、b、c中恰有一個偶數(shù)”時的正確反設(shè)為(  )

  A.a、b、c都是奇數(shù)

  B.a、b、c或都是奇數(shù)或至少有兩個偶數(shù)

  C.a、b、c都是偶數(shù)

  D.a、b、c中至少有兩個偶數(shù)

  [答案] B

  [解析] a,b,c三個數(shù)的奇、偶性有以下幾種情況:①全是奇數(shù);②有兩個奇數(shù),一個偶數(shù);③有一個奇數(shù),兩個偶數(shù);④三個偶數(shù).因為要否定②,所以假設(shè)應(yīng)為“全是奇數(shù)或至少有兩個偶數(shù)”.故應(yīng)選B.

  3.用反證法證明命題“三角形的內(nèi)角中至少有一個不大于60°”時,反設(shè)正確的是(  )

  A.假設(shè)三內(nèi)角都不大于60°

  B.假設(shè)三內(nèi)角都大于60°

  C.假設(shè)三內(nèi)角至多有一個大于60°

  D.假設(shè)三內(nèi)角至多有兩個大于60°

  [答案] B

  [解析] “至少有一個不大于”的否定是“都大于60°”.故應(yīng)選B.

  4.用反證法證明命題:“若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一個是偶數(shù)”時,下列假設(shè)正確的是(  )

  A.假設(shè)a,b,c都是偶數(shù)

  B.假設(shè)a、b,c都不是偶數(shù)

  C.假設(shè)a,b,c至多有一個偶數(shù)

  D.假設(shè)a,b,c至多有兩個偶數(shù)

  [答案] B

  [解析] “至少有一個”反設(shè)詞應(yīng)為“沒有一個”,也就是說本題應(yīng)假設(shè)為a,b,c都不是偶數(shù).

  5.命題“△ABC中,若∠A>∠B,則a>b”的結(jié)論的否定應(yīng)該是(  )

  A.a

  B.a≤b

  C.a=b

  D.a≥b

  [答案] B

  [解析] “a>b”的否定應(yīng)為“a=b或a

  6.已知a,b是異面直線,直線c平行于直線a,那么c與b的位置關(guān)系為(  )

  A.一定是異面直線

  B.一定是相交直線

  C.不可能是平行直線

  D.不可能是相交直線

  [答案] C

  [解析] 假設(shè)c∥b,而由c∥a,可得a∥b,這與a,b異面矛盾,故c與b不可能是平行直線.故應(yīng)選C.

  7.設(shè)a,b,c∈(-∞,0),則三數(shù)a+1b,c+1a,b+1c中(  )

  A.都不大于-2

  B.都不小于-2

  C.至少有一個不大于-2

  D.至少有一個不小于-2

  [答案] C

  [解析] a+1b+c+1a+b+1c

  =a+1a+b+1b+c+1c

  ∵a,b,c∈(-∞,0),

  ∴a+1a=--a+-1a≤-2

  b+1b=--b+-1b≤-2

  c+1c=--c+-1c≤-2

  ∴a+1b+c+1a+b+1c≤-6

  ∴三數(shù)a+1b、c+1a、b+1c中至少有一個不大于-2,故應(yīng)選C.

  8.若P是兩條異面直線l、m外的任意一點,則(  )

  A.過點P有且僅有一條直線與l、m都平行

  B.過點P有且僅有一條直線與l、m都垂直

  C.過點P有且僅有一條直線與l、m都相交

  D.過點P有且僅有一條直線與l、m都異面

  [答案] B

  [解析] 對于A,若存在直線n,使n∥l且n∥m

  則有l(wèi)∥m,與l、m異面矛盾;對于C,過點P與l、m都相交的直線不一定存在,反例如圖(l∥α);對于D,過點P與l、m都異面的直線不唯一.

  9.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎”,乙說:“甲、丙都未獲獎”,丙說:“我獲獎了”,丁說:“是乙獲獎了”,四位歌手的話只有兩句是對的,則獲獎的歌手是(  )

  A.甲

  B.乙

  C.丙

  D.丁

  [答案] C

  [解析] 因為只有一人獲獎,所以丙、丁只有一個說對了,同時甲、乙中只有一人說對了,假設(shè)乙說的對,這樣丙就錯了,丁就對了,也就是甲也對了,與甲錯矛盾,所以乙說錯了,從而知甲、丙對,所以丙為獲獎歌手.故應(yīng)選C.

  10.已知x1>0,x1≠1且xn+1=xn(x2n+3)3x2n+1(n=1,2…),試證“數(shù)列{xn}或者對任意正整數(shù)n都滿足xnxn+1”,當(dāng)此題用反證法否定結(jié)論時,應(yīng)為(  )

  A.對任意的正整數(shù)n,都有xn=xn+1

  B.存在正整數(shù)n,使xn=xn+1

  C.存在正整數(shù)n,使xn≥xn+1且xn≤xn-1

  D.存在正整數(shù)n,使(xn-xn-1)(xn-xn+1)≥0

  [答案] D

  [解析] 命題的結(jié)論是“對任意正整數(shù)n,數(shù)列{xn}是遞增數(shù)列或是遞減數(shù)列”,其反設(shè)是“存在正整數(shù)n,使數(shù)列既不是遞增數(shù)列,也不是遞減數(shù)列”.故應(yīng)選D.

  高中數(shù)學(xué)反證法例題二

  填空題

  11.命題“任意多面體的面至少有一個是三角形或四邊形或五邊形”的結(jié)論的否定是________.

  [答案] 沒有一個是三角形或四邊形或五邊形

  [解析] “至少有一個”的否定是“沒有一個”.

  12.用反證法證明命題“a,b∈N,ab可被5整除,那么a,b中至少有一個能被5整除”,那么反設(shè)的內(nèi)容是________________.

  [答案] a,b都不能被5整除

  [解析] “至少有一個”的否定是“都不能”.

  13.用反證法證明命題:“一個三角形中不能有兩個直角”的過程歸納為以下三個步驟:

 ?、?ang;A+∠B+∠C=90°+90°+∠C>180°,這與三角形內(nèi)角和為180°相矛盾,則∠A=∠B=90°不成立;

 ?、谒砸粋€三角形中不能有兩個直角;

  ③假設(shè)∠A,∠B,∠C中有兩個角是直角,不妨設(shè)∠A=∠B=90°.

  正確順序的序號排列為____________.

  [答案]?、邰佗?/p>

  [解析] 由反證法證明的步驟知,先反證即③,再推出矛盾即①,最后作出判斷,肯定結(jié)論即②,即順序應(yīng)為③①②.

  14.用反證法證明質(zhì)數(shù)有無限多個的過程如下:

  假設(shè)______________.設(shè)全體質(zhì)數(shù)為p1、p2、…、pn,令p=p1p2…pn+1.

  顯然,p不含因數(shù)p1、p2、…、pn.故p要么是質(zhì)數(shù),要么含有______________的質(zhì)因數(shù).這表明,除質(zhì)數(shù)p1、p2、…、pn之外,還有質(zhì)數(shù),因此原假設(shè)不成立.于是,質(zhì)數(shù)有無限多個.

  [答案] 質(zhì)數(shù)只有有限多個 除p1、p2、…、pn之外

  [解析] 由反證法的步驟可得.

  高中數(shù)學(xué)反證法例題三

  解答題

  15.已知:a+b+c>0,ab+bc+ca>0,abc>0.

  求證:a>0,b>0,c>0.

  [證明] 用反證法:

  假設(shè)a,b,c不都是正數(shù),由abc>0可知,這三個數(shù)中必有兩個為負(fù)數(shù),一個為正數(shù),

  不妨設(shè)a<0,b<0,c>0,則由a+b+c>0,

  可得c>-(a+b),

  又a+b<0,∴c(a+b)<-(a+b)(a+b)

  ab+c(a+b)<-(a+b)(a+b)+ab

  即ab+bc+ca<-a2-ab-b2

  ∵a2>0,ab>0,b2>0,∴-a2-ab-b2=-(a2+ab+b2)<0,即ab+bc+ca<0,

  這與已知ab+bc+ca>0矛盾,所以假設(shè)不成立.

  因此a>0,b>0,c>0成立.

  16.已知a,b,c∈(0,1).求證:(1-a)b,(1-b)c,(1-c)a不能同時大于14.

  [證明] 證法1:假設(shè)(1-a)b、(1-b)c、(1-c)a都大于14.∵a、b、c都是小于1的正數(shù),∴1-a、1-b、1-c都是正數(shù).(1-a)+b2≥(1-a)b>14=12,

  同理(1-b)+c2>12,(1-c)+a2>12.

  三式相加,得

  (1-a)+b2+(1-b)+c2+(1-c)+a2>32,

  即32>32,矛盾.

  所以(1-a)b、(1-b)c、(1-c)a不能都大于14.

  證法2:假設(shè)三個式子同時大于14,即(1-a)b>14,(1-b)c>14,(1-c)a>14,三式相乘得

  (1-a)b(1-b)c(1-c)a>143①

  因為0

  同理,0

  所以(1-a)a(1-b)b(1-c)c≤143.②

  因為①與②矛盾,所以假設(shè)不成立,故原命題成立.

  17.已知函數(shù)f(x)是(-∞,+∞)上的增函數(shù),a,b∈R.

  (1)若a+b≥0,求證:f(a)+f(b)≥f(-a)+f(-b);

  (2)判斷(1)中命題的逆命題是否成立,并證明你的結(jié)論.

  [解析] (1)證明:∵a+b≥0,∴a≥-b.

  由已知f(x)的單調(diào)性得f(a)≥f(-b).

  又a+b≥0?b≥-a?f(b)≥f(-a).

  兩式相加即得:f(a)+f(b)≥f(-a)+f(-b).

  (2)逆命題:

  f(a)+f(b)≥f(-a)+f(-b)?a+b≥0.

  下面用反證法證之.

  假設(shè)a+b<0,那么:

  a+b<0?a<-b?f(a)

  ?f(a)+f(b)

  這與已知矛盾,故只有a+b≥0.逆命題得證.

  18.(2010?湖北理,20改編)已知數(shù)列{bn}的通項公式為bn=1423n-1.求證:數(shù)列{bn}中的任意三項不可能成等差數(shù)列.

  [解析] 假設(shè)數(shù)列{bn}存在三項br、bs、bt(rbs>br,則只可能有2bs=br+bt成立.

  ∴2?1423s-1=1423r-1+1423t-1.

  兩邊同乘3t-121-r,化簡得3t-r+2t-r=2?2s-r3t-s,

  由于r

  故數(shù)列{bn}中任意三項不可能成等差數(shù)列.

高中數(shù)學(xué)反證法例題

反證法首先假設(shè)某命題不成立(即在原命題的題設(shè)下,結(jié)論不成立),然后推理出明顯矛盾的結(jié)果,從而下結(jié)論說假設(shè)不成立,原命題得證。下面由學(xué)習(xí)啦小編給你帶來關(guān)于高中數(shù)學(xué)反證法例題,希望對你有幫助! 高中數(shù)學(xué)反證法例題一 選擇題 1.否
推薦度:
點擊下載文檔文檔為doc格式

精選文章

3630194