學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高三數(shù)學(xué)初階段知識點

時間: 贊銳20 分享

我們常常會感覺到學(xué)習(xí)真是難啊,天天都耽誤我的休息時間和玩的時間,也使我非常傷腦筋。但是如果學(xué)習(xí)不辛苦的話,我又怎么能嘗里面的酸甜苦辣呢。下面是小編給大家?guī)淼母呷龜?shù)學(xué)初階段知識點,希望能助你一臂之力!

高三數(shù)學(xué)初階段知識點1

任一x?A,x?B,記做AB

AB,BAA=B

AB={x|x?A,且x?B}

AB={x|x?A,或x?B}

Card(AB)=card(A)+card(B)-card(AB)

(1)命題

原命題若p則q

逆命題若q則p

否命題若p則q

逆否命題若q,則p

(2)AB,A是B成立的充分條件

BA,A是B成立的必要條件

AB,A是B成立的充要條件

1.集合元素具有①確定性;②互異性;③無序性

2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

(3)集合的運(yùn)算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性質(zhì)

n元集合的字集數(shù):2n

真子集數(shù):2n-1;

非空真子集數(shù):2n-2

高三數(shù)學(xué)初階段知識點2

1.數(shù)列的定義

按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個數(shù)都叫做數(shù)列的項.

(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.

(2)在數(shù)列的定義中并沒有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….

(4)數(shù)列的項與它的項數(shù)是不同的,數(shù)列的項是指這個數(shù)列中的某一個確定的數(shù),是一個函數(shù)值,也就是相當(dāng)于f(n),而項數(shù)是指這個數(shù)在數(shù)列中的位置序號,它是自變量的值,相當(dāng)于f(n)中的n.

(5)次序?qū)τ跀?shù)列來講是十分重要的,有幾個相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個數(shù)按不同的次序排列時,就會得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數(shù)列的分類

(1)根據(jù)數(shù)列的項數(shù)多少可以對數(shù)列進(jìn)行分類,分為有窮數(shù)列和無窮數(shù)列.在寫數(shù)列時,對于有窮數(shù)列,要把末項寫出,例如數(shù)列1,3,5,7,9,…,2n-1表示有窮數(shù)列,如果把數(shù)列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數(shù)列.

(2)按照項與項之間的大小關(guān)系或數(shù)列的增減性可以分為以下幾類:遞增數(shù)列、遞減數(shù)列、擺動數(shù)列、常數(shù)列.

3.數(shù)列的通項公式

數(shù)列是按一定次序排列的一列數(shù),其內(nèi)涵的本質(zhì)屬性是確定這一列數(shù)的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數(shù)列,正像每個函數(shù)關(guān)系不都能用解析式表達(dá)出來一樣,也不是每個數(shù)列都能寫出它的通項公式;有的數(shù)列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數(shù)列前面的有限項,無其他說明,數(shù)列是不能確定的,通項公式更非.如:數(shù)列1,2,3,4,…,

由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據(jù)數(shù)列的構(gòu)成規(guī)律,多觀察分析,真正找到數(shù)列的內(nèi)在規(guī)律,由數(shù)列前幾項寫出其通項公式,沒有通用的方法可循.

再強(qiáng)調(diào)對于數(shù)列通項公式的理解注意以下幾點:

(1)數(shù)列的通項公式實際上是一個以正整數(shù)集N_或它的有限子集{1,2,…,n}為定義域的函數(shù)的表達(dá)式.

(2)如果知道了數(shù)列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數(shù)列的各項;同時,用數(shù)列的通項公式也可判斷某數(shù)是否是某數(shù)列中的一項,如果是的話,是第幾項.

(3)如所有的函數(shù)關(guān)系不一定都有解析式一樣,并不是所有的數(shù)列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構(gòu)成的數(shù)列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數(shù)列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數(shù)列,只給出它的前幾項,并沒有給出它的構(gòu)成規(guī)律,那么僅由前面幾項歸納出的數(shù)列通項公式并不.

4.數(shù)列的圖象

對于數(shù)列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應(yīng)關(guān)系:

序號:1234567

項:45678910

這就是說,上面可以看成是一個序號集合到另一個數(shù)的集合的映射.因此,從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整集N_(或它的有限子集{1,2,3,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時,對應(yīng)的一列函數(shù)值.這里的函數(shù)是一種特殊的函數(shù),它的自變量只能取正整數(shù).

由于數(shù)列的項是函數(shù)值,序號是自變量,數(shù)列的通項公式也就是相應(yīng)函數(shù)和解析式.

數(shù)列是一種特殊的函數(shù),數(shù)列是可以用圖象直觀地表示的.

數(shù)列用圖象來表示,可以以序號為橫坐標(biāo),相應(yīng)的項為縱坐標(biāo),描點畫圖來表示一個數(shù)列,在畫圖時,為方便起見,在平面直角坐標(biāo)系兩條坐標(biāo)軸上取的單位長度可以不同,從數(shù)列的圖象表示可以直觀地看出數(shù)列的變化情況,但不精確.

把數(shù)列與函數(shù)比較,數(shù)列是特殊的函數(shù),特殊在定義域是正整數(shù)集或由以1為首的有限連續(xù)正整數(shù)組成的集合,其圖象是無限個或有限個孤立的點.

5.遞推數(shù)列

一堆鋼管,共堆放了七層,自上而下各層的鋼管數(shù)構(gòu)成一個數(shù)列:4,5,6,7,8,9,10.①

數(shù)列①還可以用如下方法給出:自上而下第一層的鋼管數(shù)是4,以下每一層的鋼管數(shù)都比上層的鋼管數(shù)多1。

高三數(shù)學(xué)初階段知識點3

⑴公比為q的等比數(shù)列,從中取出等距離的項,構(gòu)成一個新數(shù)列,此數(shù)列仍是等比數(shù)列,其公比為q(m為等距離的項數(shù)之差).

⑵對任何m、n,在等比數(shù)列中有:a=a·q,特別地,當(dāng)m=1時,便得等比數(shù)列的通項公式,此式較等比數(shù)列的通項公式更具有普遍性.

⑶一般地,如果t,k,p,…,m,n,r,…皆為自然數(shù),且t+k,p,…,m+…=m+n+r+…(兩邊的自然數(shù)個數(shù)相等),那么當(dāng)為等比數(shù)列時,有:a.a.a.…=a.a.a.…..

⑷若是公比為q的等比數(shù)列,則{|a|}、、、{}也是等比數(shù)列,其公比分別為|q|}、、、{}.

⑸如果是等比數(shù)列,公比為q,那么,a,a,a,…,a,…是以q為公比的等比數(shù)列.

⑹如果是等比數(shù)列,那么對任意在n,都有a·a=a·q>0.

⑺兩個等比數(shù)列各對應(yīng)項的積組成的數(shù)列仍是等比數(shù)列,且公比等于這兩個數(shù)列的公比的積.

⑻當(dāng)q>1且a>0或0

高三數(shù)學(xué)初階段知識點相關(guān)文章:

高三數(shù)學(xué)復(fù)習(xí)各階段復(fù)習(xí)要點

高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)

高三數(shù)學(xué)知識點考點總結(jié)大全

高三數(shù)學(xué)知識點大全

高三數(shù)學(xué)知識點梳理匯總

高三數(shù)學(xué)重要知識點整理

高三數(shù)學(xué)知識點梳理

高三數(shù)學(xué)的必備知識點總結(jié)

高三數(shù)學(xué)知識點總結(jié)大全

1069843