學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 高三數(shù)學(xué)的必備知識點總結(jié)

高三數(shù)學(xué)的必備知識點總結(jié)

時間: 麗儀1102 分享

高三數(shù)學(xué)的必備知識點總結(jié)

  高三的同學(xué)們,高考在即。數(shù)學(xué)的必備知識點都掌握了嗎?下面由學(xué)習(xí)啦小編為大家提供關(guān)于高三數(shù)學(xué)的必備知識點總結(jié),希望對大家有幫助!

  高三數(shù)學(xué)的必備知識點

  1、遺忘空集致誤

  由于空集是任何非空集合的真子集,因此B=?時也滿足B?A。解含有參數(shù)的集合問題時,要特別注意當參數(shù)在某個范圍內(nèi)取值時所給的集合可能是空集這種情況。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。

  3、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  4、充分條件、必要條件顛倒致誤

  對于兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據(jù)充分條件和必要條件的概念作出準確的判斷。

  5、“或”“且”“非”理解不準致誤

  命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數(shù)取值范圍的題目,也可以把“或”“且”“非”與集合的“并”“交”“補”對應(yīng)起來進行理解,通過集合的運算求解。

  6、函數(shù)的單調(diào)區(qū)間理解不準致誤

  在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  7、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。

  8、函數(shù)零點定理使用不當致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。

  9、三角函數(shù)的單調(diào)性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進行判斷。

  10、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。

  11、向量夾角范圍不清致誤

  解題時要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  12、an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。

  13、對數(shù)列的定義、性質(zhì)理解錯誤

  等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈N*)是等差數(shù)列。

  14、數(shù)列中的最值錯誤

  數(shù)列問題中其通項公式、前n項和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關(guān)系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠近而定。

  15、錯位相減求和項處理不當致誤

  錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積所組成的,求其前n項和?;痉椒ㄊ窃O(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n-1項和為主的求和問題.這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。

  16、不等式性質(zhì)應(yīng)用不當致誤

  在使用不等式的基本性質(zhì)進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤。

  17、忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務(wù)必注意a,b為正數(shù)(或a,b非負),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。

  18、不等式恒成立問題致誤

  解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)-g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。

  19、忽視三視圖中的實、虛線致誤

  三視圖是根據(jù)正投影原理進行繪制,嚴格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

  20、面積體積計算轉(zhuǎn)化不靈活致誤

  面積、體積的計算既需要學(xué)生有扎實的基礎(chǔ)知識,又要用到一些重要的思想方法,是高考考查的重要題型.因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進行分析求解。

  高三數(shù)學(xué)的答題技巧

  1、調(diào)整好狀態(tài),控制好自我。

  (1)保持清醒。數(shù)學(xué)的考試時間在下午,建議同學(xué)們中午最好休息半個小時或一個小時,其間盡量放松自己,從心理上暗示自己:只有靜心休息才能確??荚嚂r清醒。

  (2)按時到位。今年的答題卡不再單獨發(fā)放,要求答在答題卷上,但發(fā)卷時間應(yīng)在開考前5-10分鐘內(nèi)。建議同學(xué)們提前15-20分鐘到達考場。

  2、通覽試卷,樹立自信。

  剛拿到試卷,一般心情比較緊張,此時不易匆忙作答,應(yīng)從頭到尾、通覽全卷,哪些是一定會做的題要心中有數(shù),先易后難,穩(wěn)定情緒。答題時,見到簡單題,要細心,莫忘乎所以。面對偏難的題,要耐心,不能急。

  3、提高解選擇題的速度、填空題的準確度。

  數(shù)學(xué)選擇題是知識靈活運用,解題要求是只要結(jié)果、不要過程。因此,逆代法、估算法、特例法、排除法、數(shù)形結(jié)合法……盡顯威力。12個選擇題,若能把握得好,容易的一分鐘一題,難題也不超過五分鐘。由于選擇題的特殊性,由此提出解選擇題要求“快、準、巧”,忌諱“小題大做”。填空題也是只要結(jié)果、不要過程,因此要力求“完整、嚴密”。

  4、審題要慢,做題要快,下手要準。

  題目本身就是破解這道題的信息源,所以審題一定要逐字逐句看清楚,只有細致地審題才能從題目本身獲得盡可能多的信息。

  找到解題方法后,書寫要簡明扼要,快速規(guī)范,不拖泥帶水,牢記高考評分標準是按步給分,關(guān)鍵步驟不能丟,但允許合理省略非關(guān)鍵步驟。答題時,盡量使用數(shù)學(xué)語言、符號,這比文字敘述要節(jié)省而嚴謹。

  5、保質(zhì)保量拿下中下等題目。

  中下題目通常占全卷的80%以上,是試題的主要部分,是考生得分的主要來源。誰能保質(zhì)保量地拿下這些題目,就已算是打了個勝仗,有了勝利在握的心理,對攻克高難題會更放得開。

  6、要牢記分段得分的原則,規(guī)范答題。

  會做的題目要特別注意表達的準確、考慮的周密、書寫的規(guī)范、語言的科學(xué),防止被“分段扣點分”。

  高三數(shù)學(xué)的六大類型題

  一、三角函數(shù)題

  三角題一般在解答題的前兩道題的位置上,主要考查三角恒等變換、三角函數(shù)的圖像與性質(zhì)、解三角形等有關(guān)內(nèi)容.三角函數(shù)、平面向量和三角形中的正、余弦定理相互交匯,是高考中考查的熱點.

  縱觀近幾年的高考試題,許多新穎別致的三角解答題就是以此為出發(fā)點設(shè)計的,在這類問題中平面向量往往只是起到“包裝”的作用,實際主要考查考生利用三角函數(shù)的性質(zhì)、三角恒等變換與正、余弦定理解決問題的能力.解決這類問題的基本思路是“脫掉向量的外衣,抓住問題的實質(zhì),靈活地實現(xiàn)問題的轉(zhuǎn)化,選擇合理的解決方法”,在解題過程中要注意三角恒等變換公式的多樣性和靈活性,注意題目中隱含的各種限制條件,做到推理嚴謹、計算準確、表達確切.

  注意的問題

  注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時,套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號看象限)時,很容易因為粗心,導(dǎo)致錯誤!一著不慎,滿盤皆輸!).

  二、數(shù)列題

  數(shù)列題重點考查等差數(shù)列、等比數(shù)列、遞推數(shù)列的綜合應(yīng)用,常與不等式、函數(shù)、導(dǎo)數(shù)等知識綜合交匯,既考查分類、轉(zhuǎn)化、化歸、歸納、遞推等數(shù)學(xué)思想方法,又考查綜合運用知識進行運算、推理論證及解決問題的能力.近幾年這類試題的位置有所前移,難度明顯降低.

  注意的問題

  1.證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列.

  2.最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當前的式子轉(zhuǎn)化到目標式子,一般進行適當?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結(jié)論時一定寫上綜上:由①②得證.

  3.證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識).

  三、立體幾何題

  常以柱體、錐體、組合體為載體全方位地考查立體幾何中的重要內(nèi)容,如線線、線面與面面的位置關(guān)系,線面角、二面角問題,距離問題等,既有計算又有證明,一題多問,遞進排列,此類試題既可用傳統(tǒng)方法解答,又可用空間向量法處理,有的題是兩法兼用,可謂珠聯(lián)璧合,相得益彰.究竟選用哪種方法,要由自己的長處和圖形特點來確定.便于建立空間直角坐標系的,往往選用向量法,反之,選用傳統(tǒng)方法.另外,“動態(tài)”探索性問題是近幾年高考立體幾何命題的新亮點,三視圖的巧妙參與也是立體幾何命題的新手法,要注意把握.

  注意的問題

  1.證明線面位置關(guān)系,一般不需要去建系,更簡單.

  2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系.

  3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題).

  四、概率問題

  概率題一般在解答題的前三道題的位置上,主要考查數(shù)據(jù)處理能力、應(yīng)用意識、必然與或然思想,因此近幾年概率題常以概率與統(tǒng)計的交匯形式呈現(xiàn),并用實際生活中的背景來“包裝”.概率重點考查離散型隨機變量的分布列與期望、互斥事件有一個發(fā)生的概率、相互獨立事件同時發(fā)生的概率、獨立重復(fù)試驗與二項分布等;統(tǒng)計重點考查抽樣方法(特別是分層抽樣)、樣本的頻率分布、樣本的特征數(shù)、莖葉圖、線性回歸、列聯(lián)表等,穿插考查合情推理能力和優(yōu)化決策能力.同時,關(guān)注幾何概型與定積分的交匯考查,此類試題在近幾年的高考中難度有所提升,考生應(yīng)有心理準備.

  注意的問題

  1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù).

  2.搞清是什么概率模型,套用哪個公式.

  3.記準均值、方差、標準差公式.

  4.求概率時,正難則反(根據(jù)p1+p2+...+pn=1).

  5.注意計數(shù)時利用列舉、樹圖等基本方法.

  6.注意放回抽樣,不放回抽樣.

  7.注意“零散的”的知識點(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透.

  8.注意條件概率公式.

  9.注意平均分組、不完全平均分組問題.

  五、圓錐曲線問題

  解析幾何題一般在解答題的后三道題的位置上,有時是“把關(guān)題”或“壓軸題”,說明了解析幾何題依然是重頭戲,在新課標高考中依然占有較突出的地位.考查重點:第一,解析幾何自身模塊的小交匯,是指以圓、圓錐曲線為載體呈現(xiàn)的,將兩種或兩種以上的知識結(jié)合起來綜合考查.如不同曲線(含直線)之間的結(jié)合,直線是各類曲線和相關(guān)試題最常用的“調(diào)味品”,顯示了直線與方程的各知識點的基礎(chǔ)性和應(yīng)用性.第二,圓錐曲線與不同模塊知識的大交匯,以解析幾何與函數(shù)、向量、代數(shù)知識的結(jié)合最為常見.有關(guān)解析幾何的最值、定值、定點問題應(yīng)給予重視.一般來說,解析幾何題計算量大且有一定的技巧性(要求品出“幾何味”來),需要“精打細算”,對考生的意志品質(zhì)和數(shù)學(xué)機智都是一種考驗和檢測.

  注意的問題

  1.注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法.

  2.注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時),知道弦中點時,往往用點差法);注意判別式;注意韋達定理;注意弦長公式;注意自變量的取值范圍等等;

  3.戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。

  六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題

  導(dǎo)數(shù)題考查的重點是用導(dǎo)數(shù)研究函數(shù)性質(zhì)或解決與函數(shù)有關(guān)的問題.往往將函數(shù)、不等式、方程、導(dǎo)數(shù)等有機地綜合,構(gòu)成一道超大型綜合題,體現(xiàn)了在“知識網(wǎng)絡(luò)交匯點處設(shè)計試題”的高考命題指導(dǎo)思想.鑒于該類試題的難度大,有些題還有高等數(shù)學(xué)的背景和競賽題的味道,標準答案提供的解法往往如同“神來之筆”,確實想不到,加之“搏殺”到此時的考生的精力和考試時間基本耗盡,建議考生一定要當機立斷,視時間和自身實力,先看第(1)問可否拿下,再確定放棄、分段得分或強攻.近幾年該類試題與解析幾何題輪流“坐莊”,經(jīng)常充當“把關(guān)題”或“壓軸題”的重要角色.

  注意的問題

  1.先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號;知單調(diào)性,求參數(shù)范圍,帶等號).

  2.注意最后一問有應(yīng)用前面結(jié)論的意識.

  3.注意分論討論的思想.

  4.不等式問題有構(gòu)造函數(shù)的意識.

  5.恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法).

  6.整體思路上保6分,爭10分,想14分.

  總之,解答題的過程要做到“步步有理有據(jù)”.書寫解題過程時,要分清主次,要理清哪些步驟是必須寫的(即得分點),哪些步驟是可以在演草紙上演算的,只有“精”寫過程,才能節(jié)約時間,答題過程也才能簡捷、清晰.當然“精”寫過程是建立在步驟完整的基礎(chǔ)之上的,任何的“跳步”書寫都容易產(chǎn)生歧義,都是要失分的.當然,要保證解答題得高分,除了步驟要寫清晰以外,結(jié)果還要準確.“會而不對”的現(xiàn)象是很常見的,這也是制約“得分”的“致命點”。


猜你喜歡:

1.高三數(shù)學(xué)復(fù)習(xí)資料匯總

2.高三數(shù)學(xué)二輪總復(fù)習(xí)計劃匯總

3.高三數(shù)學(xué)總復(fù)習(xí)資料

4.高三數(shù)學(xué)易錯點整理

5.高考數(shù)學(xué)復(fù)習(xí)重點知識點匯總

3739564