學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

初中數(shù)學(xué)中的幾何部分怎樣學(xué)習(xí)

時(shí)間: 鞏詩(shī)1173 分享

  幾何證明題入門難,證明題難做,是許多初中生在學(xué)習(xí)中的共識(shí),這里面有很多因素,有主觀的、也有客觀的,學(xué)習(xí)不得法,沒(méi)有適當(dāng)?shù)慕忸}思路則是其中的一個(gè)重要原因。下面小編為大家分享一些初中數(shù)學(xué)幾何學(xué)習(xí)方法

  初中數(shù)學(xué)中的幾何部分怎樣學(xué)習(xí)

  一要審題。很多學(xué)生在把一個(gè)題目讀完后,還沒(méi)有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可取。我們應(yīng)該逐個(gè)條件的讀,給的條件有什么用,在腦海中打個(gè)問(wèn)號(hào),再對(duì)應(yīng)圖形來(lái)對(duì)號(hào)入座,結(jié)論從什么地方入手去尋找,也在圖中找到位置。

  二要記。這里的記有兩層意思。第一層意思是要標(biāo)記,在讀題的時(shí)候每個(gè)條件,你要在所給的圖形中標(biāo)記出來(lái)。如給出對(duì)邊相等,就用邊相等的符號(hào)來(lái)表示。第二層意思是要牢記,題目給出的條件不僅要標(biāo)記,還要記在腦海中,做到不看題,就可以把題目復(fù)述出來(lái)。

  三要引申。難度大一點(diǎn)的題目往往把一些條件隱藏起來(lái),所以我們要會(huì)引申,那么這里的引申就需要平時(shí)的積累,平時(shí)在課堂上學(xué)的基本知識(shí)點(diǎn)掌握牢固,平時(shí)訓(xùn)練的一些特殊圖形要熟記,在審題與記的時(shí)候要想到由這些條件你還可以得到哪些結(jié)論(就像電腦一下,你一點(diǎn)擊開始立刻彈出對(duì)應(yīng)的菜單),然后在圖形旁邊標(biāo)注,雖然有些條件在證明時(shí)可能用不上,但是這樣長(zhǎng)期的積累,便于以后難題的學(xué)習(xí)。

  四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結(jié)論出發(fā)往回推理。看看結(jié)論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對(duì)頂角相等2.平行線里同位角相等、內(nèi)錯(cuò)角相等3.余角、補(bǔ)角定理4.角平分線定義5.等腰三角形6.全等三角形的對(duì)應(yīng)角等等方法。然后結(jié)合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉(zhuǎn)換成證明其他的結(jié)論,通常缺少的條件會(huì)在第三步引申出的條件和題目中出現(xiàn),這時(shí)再把這些條件綜合在一起,很條理的寫出證明過(guò)程。

  五要?dú)w納總結(jié)。很多同學(xué)把一個(gè)題做出來(lái),長(zhǎng)長(zhǎng)的松了一口氣,接下來(lái)去做其他的,這個(gè)也是不可取的,應(yīng)該花上幾分鐘的時(shí)間,回過(guò)頭來(lái)找找所用的定理、公理、定義,重新審視這個(gè)題,總結(jié)這個(gè)題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。

  以上是常見(jiàn)證明題的解題思路,當(dāng)然有一些的題設(shè)計(jì)的很巧妙,往往需要我們?cè)谔罴虞o助線,分析已知、求證與圖形,探索證明的思路。

  對(duì)于證明題,有三種思考方式:

  (1)正向思維。對(duì)于一般簡(jiǎn)單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。

  (2)逆向思維。顧名思義,就是從相反的方向思考問(wèn)題。運(yùn)用逆向思維解題,能使學(xué)生從不同角度,不同方向思考問(wèn)題,探索解題方法,從而拓寬學(xué)生的解題思路。這種方法是推薦學(xué)生一定要掌握的。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學(xué)這門學(xué)科知識(shí)點(diǎn)很少,關(guān)鍵是怎樣運(yùn)用,對(duì)于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學(xué)的不好,做題沒(méi)有思路,那你一定要注意了:從現(xiàn)在開始,總結(jié)做題方法。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過(guò)程:要證明某兩條邊相等,那么結(jié)合圖形可以看出,只要證出某兩個(gè)三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個(gè)條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過(guò)程正著寫出來(lái)就可以了。這是非常好用的方法,同學(xué)們一定要試一試。

  (3)正逆結(jié)合。對(duì)于從結(jié)論很難分析出思路的題目,同學(xué)們可以結(jié)合結(jié)論和已知條件認(rèn)真的分析,初中數(shù)學(xué)中,一般所給的已知條件都是解題過(guò)程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長(zhǎng)法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對(duì)角線,或補(bǔ)形等等。正逆結(jié)合,戰(zhàn)無(wú)不勝。

  要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。

  下面歸類一下,多做練習(xí),熟能生巧,遇到幾何證明題能想到采用哪一類型原理來(lái)解決問(wèn)題。

  一、證明兩線段相等

  1.兩全等三角形中對(duì)應(yīng)邊相等。

  2.同一三角形中等角對(duì)等邊。

  3.等腰三角形頂角的平分線或底邊的高平分底邊。

  4.平行四邊形的對(duì)邊或?qū)蔷€被交點(diǎn)分成的兩段相等。

  5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。

  6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。

  7.角平分線上任一點(diǎn)到角的兩邊距離相等。

  8.過(guò)三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。

  9.同圓(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等圓心角、圓周角所對(duì)的弦相等。

  10.圓外一點(diǎn)引圓的兩條切線的切線長(zhǎng)相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。

  11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。

  12.兩圓的內(nèi)(外)公切線的長(zhǎng)相等。

  13.等于同一線段的兩條線段相等。

  二、證明兩個(gè)角相等

  1.兩全等三角形的對(duì)應(yīng)角相等。

  2.同一三角形中等邊對(duì)等角。

  3.等腰三角形中,底邊上的中線(或高)平分頂角。

  4.兩條平行線的同位角、內(nèi)錯(cuò)角或平行四邊形的對(duì)角相等。

  5.同角(或等角)的余角(或補(bǔ)角)相等。

  6.同圓(或圓)中,等弦(或弧)所對(duì)的圓心角相等,圓周角相等,弦切角等于它所夾的弧對(duì)的圓周角。

  7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

  8.相似三角形的對(duì)應(yīng)角相等。

  9.圓的內(nèi)接四邊形的外角等于內(nèi)對(duì)角。

  10.等于同一角的兩個(gè)角相等。

  三、證明兩條直線互相垂直

  1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。

  2.三角形中一邊的中線若等于這邊一半,則這一邊所對(duì)的角是直角。

  3.在一個(gè)三角形中,若有兩個(gè)角互余,則第三個(gè)角是直角。

  4.鄰補(bǔ)角的平分線互相垂直。

  5.一條直線垂直于平行線中的一條,則必垂直于另一條。

  6.兩條直線相交成直角則兩直線垂直。

  7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。

  8.利用勾股定理的逆定理。

  9.利用菱形的對(duì)角線互相垂直。

  10.在圓中平分弦(或弧)的直徑垂直于弦。

  11.利用半圓上的圓周角是直角。

  四、證明兩直線平行

  1.垂直于同一直線的各直線平行。

  2.同位角相等,內(nèi)錯(cuò)角相等或同旁內(nèi)角互補(bǔ)的兩直線平行。

  3.平行四邊形的對(duì)邊平行。

  4.三角形的中位線平行于第三邊。

  5.梯形的中位線平行于兩底。

  6.平行于同一直線的兩直線平行。

  7.一條直線截三角形的兩邊(或延長(zhǎng)線)所得的線段對(duì)應(yīng)成比例,則這條直線平行于第三邊。

  五、證明線段的和差倍分

  1.作兩條線段的和,證明與第三條線段相等。

  2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。

  3.延長(zhǎng)短線段為其二倍,再證明它與較長(zhǎng)的線段相等。

  4.取長(zhǎng)線段的中點(diǎn),再證其一半等于短線段。

  5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質(zhì)等)。

  六、證明角的和差倍分

  1.與證明線段的和、差、倍、分思路相同。

  2.利用角平分線的定義。

  3.三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。

  七、證明線段不等

  1.同一三角形中,大角對(duì)大邊。

  2.垂線段最短。

  3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。

  4.在兩個(gè)三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。

  5.同圓或等圓中,弧大弦大,弦心距小。

  6.全量大于它的任何一部分。

  八、證明兩角的不等

  1.同一三角形中,大邊對(duì)大角。

  2.三角形的外角大于和它不相鄰的任一內(nèi)角。

  3.在兩個(gè)三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。

  4.同圓或等圓中,弧大則圓周角、圓心角大。

  5.全量大于它的任何一部分。

  九、證明比例式或等積式

  1.利用相似三角形對(duì)應(yīng)線段成比例。

  2.利用內(nèi)外角平分線定理。

  3.平行線截線段成比例。

  4.直角三角形中的比例中項(xiàng)定理即射影定理。

  5.與圓有關(guān)的比例定理---相交弦定理、切割線定理及其推論。

  6.利用比利式或等積式化得。

  十、證明四點(diǎn)共圓

  1.對(duì)角互補(bǔ)的四邊形的頂點(diǎn)共圓。

  2.外角等于內(nèi)對(duì)角的四邊形內(nèi)接于圓。

  3.同底邊等頂角的三角形的頂點(diǎn)共圓(頂角在底邊的同側(cè))。

  4.同斜邊的直角三角形的頂點(diǎn)共圓。

  5.到頂點(diǎn)距離相等的各點(diǎn)共圓

  初中數(shù)學(xué)幾何題解題技巧

  一、見(jiàn)中點(diǎn)引中位線,見(jiàn)中線延長(zhǎng)一倍 如果給出中點(diǎn)或中線,可以考慮過(guò)中點(diǎn)作中位線或把中線延長(zhǎng)一倍來(lái)解決相關(guān)問(wèn)題。

  二、 在比例線段證明中,常作平行線。 作平行線時(shí)往往是保留結(jié)論中的一個(gè)比,然后通過(guò)一個(gè)中間比與結(jié)論中的另一個(gè)比聯(lián)系起來(lái)。

  三、對(duì)于梯形問(wèn)題,常用的添加輔助線的方法有

  1、 過(guò)上底的兩端點(diǎn)向下底作垂線

  2、 過(guò)上底的一個(gè)端點(diǎn)作一腰的平行線

  3、 過(guò)上底的一個(gè)端點(diǎn)作一對(duì)角線的平行線

  4、 過(guò)一腰的中點(diǎn)作另一腰的平行線

  5、 過(guò)上底一端點(diǎn)和一腰中點(diǎn)的直線與下底的延長(zhǎng)線相交

  6、 作梯形的中位線

  7 延長(zhǎng)兩腰使之相交

  添輔助線有二種情況:

  (1)按定義添輔助線: 如證明二直線垂直可延長(zhǎng)使它們 相交后證交角為90°, 證線段倍半關(guān)系可倍線段取中點(diǎn)或半線段加倍, 證角的倍半關(guān)系也可類似添輔助線

  (2)按基本圖形添輔助線: 每個(gè)幾何定理都有與它相對(duì)應(yīng)的幾何圖形,我們 把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時(shí)補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做“補(bǔ)圖”!這樣可防止亂添線,添輔助線也有規(guī)律可循,舉例如下:

  平行線是個(gè)基本圖形: 當(dāng)幾何中出現(xiàn)平行線時(shí)添輔助線的關(guān)鍵是添與二條平行線都相交的等第三條直線

  等腰三角形是個(gè)簡(jiǎn)單的基本圖形: 當(dāng)幾何問(wèn)題中出現(xiàn)一點(diǎn)發(fā)出的二條相等線段時(shí)往往要補(bǔ)完整等腰三角形。

  出現(xiàn)角平分線與平行線組合時(shí)可延長(zhǎng)平行線與角的二邊相交得等腰三角形。

  出現(xiàn)等腰三角形底邊上的中點(diǎn)添底邊上的中線;

  出現(xiàn)角平分線與垂線組合時(shí)可延長(zhǎng)垂線與角的二邊相交得等腰三角形中的重要線段的基本圖形。

  直角三角形斜邊上中線基本圖形

  出現(xiàn)直角三角形斜邊上的中點(diǎn)往往添斜邊上的中線

  出現(xiàn)線段倍半關(guān)系且倍線段是直角三角形的斜邊則要添直角三角形斜邊上的中線得直角三角形斜邊上中線基本圖形。

  三角形中位線基本圖形 幾何問(wèn)題中出現(xiàn)多個(gè)中點(diǎn)時(shí)往往添加三角形中位線基本圖形進(jìn)行證明當(dāng)有中點(diǎn)沒(méi)有中位線時(shí)則添中位線,當(dāng)有中位線三角形不完整時(shí)則需補(bǔ)完整三角形

  當(dāng)出現(xiàn)線段倍半關(guān)系且與倍線段有公共端點(diǎn)的線段帶一個(gè)中點(diǎn)則可過(guò)這中點(diǎn)添倍線段的平行線得三角形中位線基本圖形。

  當(dāng)出現(xiàn)線段倍半關(guān)系且與半線段的端點(diǎn)是某線段的中點(diǎn),則可過(guò)帶中點(diǎn)線段的端點(diǎn)添半線段的平行線得三角形中位線基本圖形。

  全等三角形:

  全等三角形有軸對(duì)稱形,中心對(duì)稱形,旋轉(zhuǎn)形與平移形等 如果出現(xiàn)兩條相等線段或兩個(gè)檔相等角關(guān)于某一直線成軸對(duì)稱就可以添加軸對(duì)稱形全等三角形:或添對(duì)稱軸,或?qū)⑷切窝貙?duì)稱軸翻轉(zhuǎn)。

  當(dāng)幾何問(wèn)題中出現(xiàn)一組或兩組相等線段位于一組對(duì)頂角兩邊且成一直線時(shí)可添加中心對(duì)稱形全等三角形加以證明,添加方法是將四個(gè)端點(diǎn)兩兩連結(jié)或過(guò)二端點(diǎn)添平行線;

  相似三角形: 相似三角形有平行線型(帶平行線的相似三角形),相交線型,旋轉(zhuǎn)型 當(dāng)出現(xiàn)相比線段重疊在一直線上時(shí)(中點(diǎn)可看成比

  為1)可添加平行線得平行線型相似三角形。

  若平行線過(guò)端點(diǎn)添則可以分點(diǎn)或另一端點(diǎn)的線段為平行方向,這類題目中往往有多種淺線方法。

  特殊角直角三角形

  當(dāng)出現(xiàn)30,45,60,135,150度特殊角時(shí)可添加特殊角直角三角形,利用45角直角三角形三邊比為1:1:√2;30度角直角三角形三邊比為1:2:√3進(jìn)行證明 半圓上的圓周角 出現(xiàn)直徑與半圓上的點(diǎn),添90度的圓周角 出現(xiàn)90度的圓周角則添它所對(duì)弦---直徑

  補(bǔ)充:

  人說(shuō)幾何很困難,難點(diǎn)就在輔助線。

  輔助線,如何添?把握定理和概念。

  還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。

  圖中有角平分線,可向兩邊作垂線。

  也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。

  角平分線平行線,等腰三角形來(lái)添。

  角平分線加垂線,三線合一試試看。

  線段垂直平分線,常向兩端把線連。

  要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。

  三角形中兩中點(diǎn),連接則成中位線。

  三角形中有中線,延長(zhǎng)中線等中線。

  平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。

  梯形里面作高線,平移一腰試試看。

  平行移動(dòng)對(duì)角線,補(bǔ)成三角形常見(jiàn)。

  證相似,比線段,添線平行成習(xí)慣。

  等積式子比例換,尋找線段很關(guān)鍵。

  直接證明有困難,等量代換少麻煩。

  斜邊上面作高線,比例中項(xiàng)一大片。

  半徑與弦長(zhǎng)計(jì)算,弦心距來(lái)中間站。

  圓上若有一切線,切點(diǎn)圓心半徑連。

  切線長(zhǎng)度的計(jì)算,勾股定理最方便。

  要想證明是切線,半徑垂線仔細(xì)辨。

  是直徑,成半圓,想成直角徑連弦。

  弧有中點(diǎn)圓心連,垂徑定理要記全。

  圓周角邊兩條弦,直徑和弦端點(diǎn)連。

  弦切角邊切線弦,同弧對(duì)角等找完。

  要想作個(gè)外接圓,各邊作出中垂線。

  還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。

  如果遇到相交圓,不要忘作公共弦。

  內(nèi)外相切的兩圓,經(jīng)過(guò)切點(diǎn)公切線。

  若是添上連心線,切點(diǎn)肯定在上面。

  要作等角添個(gè)圓,證明題目少困難。

  輔助線,是虛線,畫圖注意勿改變。

  假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn)。

  基本作圖很關(guān)鍵,平時(shí)掌握要熟練。

  解題還要多心眼,經(jīng)常總結(jié)方法顯。

  切勿盲目亂添線,方法靈活應(yīng)多變。

4097456