學習啦>學習方法>各學科學習方法>數(shù)學學習方法>

初中數(shù)學快速學習技巧

時間: 鞏詩1173 分享

  數(shù)學難?學不會?這個時候你就需要學習和理解一下數(shù)學的思考方法和學習技巧了,下面小編為大家分享。

  數(shù)學學習的17種思考方法

  1、對應思想方法

  對應是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學數(shù)學一般是一一對應的直觀圖表,并以此孕伏函數(shù)思想。如直線上的點(數(shù)軸)與表示具體的數(shù)是一一對應。

  2、假設思想方法

  假設是先對題目中的已知條件或問題作出某種假設,然后按照題中的已知條件進行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當調整,最后找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。

  3、比較思想方法

  比較思想是數(shù)學中常見的思想方法之一,也是促進學生思維發(fā)展的手段。在教學分數(shù)應用題中,教師善于引導學生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學生較快地找到解題途徑。

  4、符號化思想方法

  用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學內容,這就是符號思想。如數(shù)學中各種數(shù)量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數(shù),以符號的濃縮形式表達大量的信息。如定律、公式、等。

  5、類比思想方法

  類比思想是指依據(jù)兩類數(shù)學對象的相似性,有可能將已知的一類數(shù)學對象的性質遷移到另一類數(shù)學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數(shù)學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。

  6、轉化思想方法

  轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。

  7、分類思想方法

  分類思想方法不是數(shù)學獨有的方法,數(shù)學的分類思想方法體現(xiàn)對數(shù)學對象的分類及其分類的標準。如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個數(shù)分質數(shù)和合數(shù)。又如三角形可以按邊分,也可以按角分。不同的分類標準就會有不同的分類結果,從而產生新的概念。對數(shù)學對象的正確、合理分類取決于分類標準的正確、合理性,數(shù)學知識的分類有助于學生對知識的梳理和建構。

  8、集合思想方法

  集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學問題或非純數(shù)學問題的思想方法。小學采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。

  9、數(shù)形結合思想方法

  數(shù)和形是數(shù)學研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學概念,復雜的數(shù)量關系,借助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數(shù)量關系表示。在解應用題中常常借助線段圖的直觀幫助分析數(shù)量關系。

  10、統(tǒng)計思想方法

  小學數(shù)學中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數(shù)應用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。

  11、極限思想方法

  事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講“圓的面積和周長”時,“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎上想象它們的極限狀態(tài),這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發(fā)了無限逼近的極限思想。

  12、代換思想方法

  它是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?

  13、可逆思想方法

  它是邏輯思維中的基本思想,當順向思維難于解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。

  14、化歸思維方法

  把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”。而數(shù)學知識聯(lián)系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助?;瘹w的方向應該是化隱為顯、化繁為簡、化難為易、化未知為已知。

  15、變中抓不變的思想方法

  在紛繁復雜的變化中如何把握數(shù)量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時科技書占30%,又買來科技書多少本?

  16、數(shù)學模型思想方法

  所謂數(shù)學模型思想是指對于現(xiàn)實世界的某一特定對象,從它特定的生活原型出發(fā),充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數(shù)學問題模型的一種思想方法。培養(yǎng)學生用數(shù)學的眼光認識和處理周圍事物或數(shù)學問題乃數(shù)學的最高境界,也是學生高數(shù)學素養(yǎng)所追求的目標。

  17、整體思想方法

  對數(shù)學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。

  數(shù)學公式快速記

  01

  有理數(shù)的加法

  同號相加一邊倒;異號相加"大"減"小"

  符號跟著大的跑,絕對值相等"零"正好

  02

  合并同類項:

  合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣.

  03

  去、添括號

  去括號、添括號,關鍵看符號,

  括號前面是正號,去、添括號不變號,

  括號前面是負號,去、添括號都變號.

  04

  一元一次方程:

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒.

  05

  平方差公式:

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆.

  06

  完全平方公式:

  完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央.

  07

  因式分解:

  一提(公因式)二套(公式)三分組,細看幾項不離譜,

  兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

  四項仔細看清楚,若有三個平方數(shù)(項),

  就用一三來分組,否則二二去分組,

  五項、六項更多項,二三、三三試分組,

  以上若都行不通,拆項、添項看清楚.

  08

  單項式運算:

  加、減、乘、除、乘(開)方,三級運算分得清,

  系數(shù)進行同級(運)算,指數(shù)運算降級(進)行.

  09

  一元一次不等式

  解題的一般步驟:

  去分母、去括號,移項時候要變號,同類項合并好,再把系數(shù)來除掉,

  兩邊除(以)負數(shù)時,不等號改向別忘了.

  10

  一元一次不等式組

  的解集:

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找

  一元二次不等式、一元一次絕對值不等式的解集:

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間.

  11

  分式混合運算

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結果要求最簡.

  12

  分式方程

  同乘最簡公分母,化成整式寫清楚,

  求得解后須驗根,原(根)留、增(根)舍,別含糊.

  13

  最簡根式的條件:

  最簡根式三條件,號內不把分母含,

  冪指數(shù)(根指數(shù))要互質、冪指比根指小一點.

  14

  特殊點的坐標特征:

  坐標平面點(x,y),橫在前來縱在后;

  (+,+),(-,+),(-,-)和(+,-),四個象限分前后;

  x軸上y為0,x為0在y軸.

  象限角的平分線:

  象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反.

  平行某軸的直線:

  平行某軸的直線,點的坐標有講究,

  直線平行x軸,縱坐標相等橫不同;

  直線平行于y軸,點的橫坐標仍照舊

  15

  對稱點的坐標:

  對稱點坐標要記牢,相反數(shù)位置莫混淆,

  x軸對稱y相反,y軸對稱x相反;

  原點對稱最好記,橫縱坐標全變號.

  16

  自變量的取值范圍:

  分式分母不為零,偶次根下負不行;

  零次冪底數(shù)不為零,整式、奇次根全能行.

  17

  函數(shù)圖象

  的移動規(guī)律:

  若把一次函數(shù)的解析式寫成y=k(x+0)+b,

  二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,

  則可用下面的口訣

  “左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”

  18

  一次函數(shù)

  的圖象與性質的口訣:

  一次函數(shù)是直線,圖象經過三象限;

  正比例函數(shù)更簡單,經過原點一直線;

  兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,

  k為正來右上斜,x增減y增減;

  k為負來左下展,變化規(guī)律正相反;

  k的絕對值越大,線離橫軸就越遠

  19

  二次函數(shù)

  的圖象與性質的口訣:

  二次函數(shù)拋物線,圖象對稱是關鍵;

  開口、頂點和交點,它們確定圖象現(xiàn);

  開口、大小由a斷,c與y軸來相見;

  b的符號較特別,符號與a相關聯(lián);

  頂點位置先找見,y軸作為參考線;

  左同右異中為0,牢記心中莫混亂;

  頂點坐標最重要,一般式配方它就現(xiàn);

  橫標即為對稱軸,縱標函數(shù)最值見.

  若求對稱軸位置, 符號反,一般、頂點、交點式,不同表達能互換.

  20

  反比例函數(shù)

  的圖象與性質的口訣:

  反比例函數(shù)有特點,雙曲線相背離得遠;

  k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;

  圖在一、三函數(shù)減,兩個分支分別減.

  圖在二、四正相反,兩個分支分別增;

  線越長越近軸,永遠與軸不沾邊.

  21

  特殊三角函

  首先記住30度、45度、60度的正弦值、余弦值的分母都是2,

  正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可.

  三角函數(shù)的增減性:正增余減

  22

  數(shù)字巧記:

  (下面的數(shù)字均是約等于,都是無理數(shù)哈!)

  =1.414(意思意思而已),

  =1.7321(三人一起商量),

  =2.236(吾量量山路),

  =2.449(糧食是酒),

  =2.645(二流是我),

  =2.828(二爸二爸),

  =3.16(山藥,六兩)

  23

  平行四邊形的判定:

  要證平行四邊形,兩個條件才能行,

  一證對邊都相等,或證對邊都平行,

  一組對邊也可以,必須相等且平行.

  對角線,是個寶,互相平分“跑不了”,

  對角相等也有用,“兩組對角”才能成.

  24

  梯形問題的輔助線:

  移動梯形對角線,兩腰之和成一線;

  平行移動一條腰,兩腰同在“△”現(xiàn);

  延長兩腰交一點,“△”中有平行線;

  作出梯形兩高線,矩形顯示在眼前;

  已知腰上一中線,莫忘作出中位線.25

  25

  添加輔助線歌:

  輔助線,怎么添?找出規(guī)律是關鍵.

  題中若有角(平)分線,可向兩邊作垂線;

  線段垂直平分線,引向兩端把線連;

  三角形邊兩中點,連接則成中位線;

  三角形中有中線,延長中線翻一番.

  26

  圓的證明歌:

  圓的證明不算難,常把半徑直徑連;

  有弦可作弦心距,它定垂直平分弦;

  直徑是圓最大弦,直圓周角立上邊,

  它若垂直平分弦,垂徑、射影響耳邊;

  還有與圓有關角,勿忘相互有關聯(lián),

  圓周、圓心、弦切角,細找關系把線連.

  同弧圓周角相等,證題用它最多見,

  圓中若有弦切角,夾弧找到就好辦;

  圓有內接四邊形,對角互補記心間,

  外角等于內對角,四邊形定內接圓;

  直角相對或共弦,試試加個輔助圓;

  若是證題打轉轉,四點共圓可解難;

  要想證明圓切線,垂直半徑過外端,

  直線與圓有共點,證垂直來半徑連,

  直線與圓未給點,需證半徑作垂線;

  四邊形有內切圓,對邊和等是條件;

  如果遇到圓與圓,弄清位置很關鍵,

  兩圓相切作公切,兩圓相交連公弦.

初中數(shù)學快速學習技巧

數(shù)學難?學不會?這個時候你就需要學習和理解一下數(shù)學的思考方法和學習技巧了,下面小編為大家分享。 數(shù)學學習的17種思考方法 1、對應思想方法 對應是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學數(shù)學一般是一一對應的直觀圖表,并
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 初中數(shù)學學習技巧
    初中數(shù)學學習技巧

    數(shù)學這一門課程的重要性自然不用多說,我們從小學到大學,從學校到生活中都要用到數(shù)學,所以學好數(shù)學對我們來說是非常重要的。想要學好數(shù)學,必然

  • 初中數(shù)學教學方法分享
    初中數(shù)學教學方法分享

    初中的學習進度和氣氛比起小學要緊張很多,許多學生在升上來之后,就出現(xiàn)了明顯的不適應。這時候要怎么去教導這個時期的學生呢?小編為大家搜集了一

  • 游戲在小學數(shù)學教學中的設計和實施
    游戲在小學數(shù)學教學中的設計和實施

    新課程標準指出,課程內容的呈現(xiàn)應充分考慮學生的認知發(fā)展規(guī)律和特點,注意課程內容呈現(xiàn)的多樣化。游戲能夠更好的引起小學生的學習興趣,下面小編

  • 小學數(shù)學課堂核心素養(yǎng)培養(yǎng)方式
    小學數(shù)學課堂核心素養(yǎng)培養(yǎng)方式

    核心素養(yǎng)成為了新一輪課程改革中的方向標,引領著中小學課程教學改革實踐。作為一線教育工作者,教師首先要明確核心素養(yǎng)的核心是什么,要怎么做才

4097435