高二數(shù)學(xué)知識點筆記(2)
高二下冊數(shù)學(xué)知識點筆記
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數(shù)乘向量
實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
3、向量的的數(shù)量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數(shù)量積的坐標表示:a·b=x·x'+y·y'。
向量的數(shù)量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質(zhì)
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的數(shù)量積與實數(shù)運算的主要不同點
1、向量的數(shù)量積不滿足結(jié)合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的數(shù)量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按這個次序構(gòu)成右手系。若a、b共線,則a×b=0。
向量的向量積性質(zhì):
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,“向量AB/向量CD”是沒有意義的。
向量的三角形不等式
5、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
?、?當且僅當a、b反向時,左邊取等號;
?、?當且僅當a、b同向時,右邊取等號。
6、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
?、?當且僅當a、b同向時,左邊取等號;
② 當且僅當a、b反向時,右邊取等號。
定比分點
定比分點公式(向量P1P=λ·向量PP2)
設(shè)P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點。則存在一個實數(shù) λ,使 向量P1P=λ·向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
三點共線定理
若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA +GB +GC=0 ,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行于任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a·b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直于任何向量.
還有注意一點,不要把點寫成叉
圓錐曲線里的弦長公式
d=根號(1+k^2)|x1-x2|=根號(1+k^2)根號[(x1+x2)^2-4x1x2]=根號[(x1-x2)^2+(y1-y2)^2]
圓里相交直線所構(gòu)成的弦長m,與圓的半徑r,圓心到直線的距離d的關(guān)系為
(m/2)^2+d^2=r^2
直線
A1x+B1y+C1=0
A2x+B2y+C2=0
平行的充要條件是A1B2+A2B1=0且B1C2+B2C1不等于0
點到直線的距離公式
d=|Ax0+By0+C|/根號(A^2+B^2)
若平行
則d=|c2-c1|/根號(A^2+B^2)
A和B上下兩個式子必須相等
看過"高二數(shù)學(xué)知識點筆記 高二數(shù)學(xué)知識點總結(jié) "的還看了: