人教版九年級數(shù)學知識點總結(jié)
數(shù)學是考試的重點考察科目,數(shù)學知識的積累和解題方法的掌握,需要科學有效的復習方法,同時需要持之以恒的堅持。下面是小編給大家整理的九年級數(shù)學知識點,希望對大家有所幫助。
九年級數(shù)學知識點整理
等腰三角形的判定方法
1.有兩條邊相等的三角形是等腰三角形。
2.判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形(簡稱:等角對等邊)。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標準差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值-最小值。
計算器——求標準差與方差的一般步驟:
1.打開計算器,按“ON”鍵,按“MODE”“2”進入統(tǒng)計(SD)狀態(tài)。
2.在開始數(shù)據(jù)輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計存儲器。
3.輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時,還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4.當所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數(shù)據(jù)的標準差;
5.標準差的平方就是方差。
初三數(shù)學下冊知識點歸納
1.解直角三角形
1.1.銳角三角函數(shù)
銳角a的正弦、余弦和正切統(tǒng)稱∠a的三角函數(shù)。
如果∠a是Rt△ABC的一個銳角,則有
1.2.銳角三角函數(shù)的計算
1.3.解直角三角形
在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。
2.直線與圓的位置關(guān)系
2.1.直線與圓的位置關(guān)系
當直線與圓有兩個公共點時,叫做直線與圓相交;當直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當直線與圓沒有公共點時,叫做直線與圓相離。
直線與圓的位置關(guān)系有以下定理:
直線與圓相切的判定定理:
經(jīng)過半徑的外端并且垂直這條半徑的直線是圓的切線。
圓的切線性質(zhì):
經(jīng)過切點的半徑垂直于圓的切線。
2.2.切線長定理
從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。
切線長定理:過圓外一點所作的圓的兩條切線長相等。
2.3.三角形的內(nèi)切圓
與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線的交點。
3.三視圖與表面展開圖
3.1.投影
物體在光線的照射下,在某個平面內(nèi)形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。
可以把太陽光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。
3.2.簡單幾何體的三視圖
物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。
主視圖、左視圖和俯視圖合稱三視圖。
產(chǎn)生主視圖的投影線方向也叫做主視方向。
3.3.由三視圖描述幾何體
三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小。
3.4.簡單幾何體的表面展開圖
將幾何體沿著某些棱“剪開”,并使各個面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開圖。
圓柱可以看做由一個矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個底面,是兩個半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動到哪個位置,都是圓柱的母線。
圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動到哪個位置,都叫做圓錐的母線。
初三數(shù)學學習方法技巧
在學習新概念、新運算時,老師們總是通過已有知識自然而然過渡到新知識,水到渠成,亦即所謂“溫故而知新”。因此說,數(shù)學是一門能自學的學科,自學成才最典型的例子就是數(shù)學家華羅庚。
我們在課堂上聽老師講解,不光是學習新知識,更重要的是潛移默化老師的那種數(shù)學思維習慣,逐漸地培養(yǎng)起自己對數(shù)學的一種悟性。我去佛山一中開家長會時,一中校長的一番話使我感觸良多。他說:我是教物理的,學生物理學得好,不是我教出來的,而是他們自己悟出來的。當然,校長是謙虛的,但他說明了一個道理,學生不能被動地學習,而應主動地學習。一個班里幾十個學生,同一個老師教,差異那么大,這就是學習主動性問題了。
自學能力越強,悟性就越高。隨著年齡的增長,同學們的依賴性應不斷減弱,而自學能力則應不斷增強。因此,要養(yǎng)成預習的習慣。在老師講新課前,能不能運用自己所學過的已掌握的舊知識去預習新課,結(jié)合新課中的新規(guī)定去分析、理解新的學習內(nèi)容。由于數(shù)學知識的無矛盾性,你所學過的數(shù)學知識永遠都是有用的,都是正確的,數(shù)學的進一步學習只是加深拓廣而已。因此,以前的數(shù)學學得扎實,就為以后的進取奠定了基礎,就不難自學新課。同時,在預習新課時,碰到什么自己解決不了的問題,帶著問題去聽老師講解新課,收獲之大是不言而喻的。有些同學為什么聽老師講新課時總有一種似懂非懂的感覺,或者是“一聽就懂、一做就錯”,就是因為沒有預習,沒有帶著問題學,沒有將“要我學”真正變?yōu)椤拔乙獙W”,力求把知識變?yōu)樽约旱摹W來學去,知識還是別人的。檢驗數(shù)學學得好不好的標準就是會不會解題。聽懂并記憶有關(guān)的定義、法則、公式、定理,只是學好數(shù)學的必要條件,能獨立解題、解對題才是學好數(shù)學的標志。
人教版九年級數(shù)學知識點總結(jié)相關(guān)文章: