九年級數(shù)學蘇教版知識點總結(jié)
每一門功課都有它自身的規(guī)律,有它自身的特點,數(shù)學當然也不例外,如果同學們在平日的學習和練習中,注意了這些規(guī)律和方法,數(shù)學成績一定會有所提高。下面是小編給大家整理的一些九年級數(shù)學的知識點,希望對大家有所幫助。
初三新學期數(shù)學知識點蘇教版
1.代數(shù)式與有理式
用運算符號把數(shù)或表示數(shù)的字母連結(jié)而成的式子,叫做代數(shù)式。單獨的一個數(shù)或字母也是代數(shù)式。
整式和分式統(tǒng)稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數(shù)式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算并且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式(數(shù)字與字母的積—包括單獨的一個數(shù)或字母)。
幾個單項式的和,叫做多項式。
說明:①根據(jù)除式中有否字母,將整式和分式區(qū)別開;根據(jù)整式中有否加減運算,把單項式、多項式區(qū)分開。②進行代數(shù)式分類時,是以所給的代數(shù)式為對象,而非以變形后的代數(shù)式為對象。劃分代數(shù)式類別時,是從外形來看。如=x,=│x│等。
4.系數(shù)與指數(shù)
區(qū)別與聯(lián)系:①從位置上看;②從表示的意義上看;
5.同類項及其合并
條件:①字母相同;②相同字母的指數(shù)相同
合并依據(jù):乘法分配律
6.根式
表示方根的代數(shù)式叫做根式。
含有關(guān)于字母開方運算的代數(shù)式叫做無理式。
注意:①從外形上判斷;②區(qū)別:是根式,但不是無理式(是無理數(shù))。
7.算術(shù)平方根
⑴正數(shù)a的正的'平方根([a≥0—與“平方根”的區(qū)別]);
⑵算術(shù)平方根與絕對值
①聯(lián)系:都是非負數(shù),=│a│
②區(qū)別:│a│中,a為一切實數(shù);中,a為非負數(shù)。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以后,被開方數(shù)相同的二次根式叫做同類二次根式。
滿足條件:①被開方數(shù)的因數(shù)是整數(shù),因式是整式;②被開方數(shù)中不含有開得盡方的因數(shù)或因式。
把分母中的根號劃去叫做分母有理化。
9.指數(shù)
⑴(—冪,乘方運算)。
①a>0時,>0;②a<0時,>0(n是偶數(shù)),<0(n是奇數(shù))。
⑵零指數(shù):=1(a≠0)。
負整指數(shù):=1/(a≠0,p是正整數(shù))。
初三數(shù)學上冊知識點歸納
1、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù),兩個負數(shù),絕對值大的反而小。
(1)一個正實數(shù)的絕對值是它本身;一個負實數(shù)的絕對值是它的相反數(shù);0的絕對值是0.即:﹝另有兩種寫法﹞
(2)實數(shù)的絕對值是一個非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值就是數(shù)軸上表示這個數(shù)的點到原點的距離.
(3)幾個非負數(shù)的和等于零則每個非負數(shù)都等于零。
注意:│a│≥0,符號"││"是"非負數(shù)"的標志;數(shù)a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現(xiàn),其關(guān)鍵一步是去掉"││"符號。
2、解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
(1)直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m(xù).
直接開平方法就是平方的逆運算.通常用根號表示其運算結(jié)果.
(2)配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據(jù)是完全平方公式。
1)轉(zhuǎn)化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2)系數(shù)化1:將二次項系數(shù)化為1
3)移項:將常數(shù)項移到等號右側(cè)
4)配方:等號左右兩邊同時加上一次項系數(shù)一半的平方
5)變形:將等號左邊的代數(shù)式寫成完全平方形式
6)開方:左右同時開平方
7)求解:整理即可得到原方程的根
(3)公式法
公式法:把一元二次方程化成一般形式,然后計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項系數(shù)a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圓的必考知識點
(1)圓
在一個平面內(nèi),一動點以一定點為中心,以一定長度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無數(shù)條對稱軸。
(2)圓的相關(guān)特點
1)徑
連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r
通過圓心并且兩端都在圓上的線段叫做直徑,字母表示為d
直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r
2)弦
連接圓上任意兩點的線段叫做弦.在同一個圓內(nèi)最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數(shù)條。
3)弧
圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。
大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,所以半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧一般用三個字母表示,劣弧一般用兩個字母表示。優(yōu)弧是所對圓心角大于180度的弧,劣弧是所對圓心角小于180度的弧。
在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。
4)角
頂點在圓心上的角叫做圓心角。
頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等于相同弧所對的圓心角的一半。
初三數(shù)學復習方法總結(jié)
概念課
要重視教學過程,要積極體驗知識產(chǎn)生、發(fā)展的過程,要把知識的來龍去脈搞清楚,認識知識發(fā)生的過程,理解公式、定理、法則的推導過程,改變死記硬背的方法,這樣我們就能從知識形成、發(fā)展過程當中,理解到學會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習題課
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進”,也就是把一個比較復雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規(guī)律,然后再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復習課
在數(shù)學學習過程中,要有一個清醒的復習意識,逐漸養(yǎng)成良好的復習習慣,從而逐步學會學習。數(shù)學復習應(yīng)是一個反思性學習過程。要反思對所學習的知識、技能有沒有達到課程所要求的程度;要反思學習中涉及到了哪些數(shù)學思想方法,這些數(shù)學思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結(jié)為這些基本問題;要反思自己的錯誤,找出產(chǎn)生錯誤的原因,訂出改正的措施。在新學期大家準備一本數(shù)學學習“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經(jīng)常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到中考時你的數(shù)學就沒有什么“病例”了。并且數(shù)學復習應(yīng)在數(shù)學知識的運用過程中進行,通過運用,達到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導下做一定數(shù)量的數(shù)學習題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復”的題海戰(zhàn)術(shù)。