學習啦 > 學習方法 > 初中學習方法 > 初二學習方法 > 八年級數(shù)學 > 初中數(shù)學八年級重點

初中數(shù)學八年級重點

時間: 慧良1230 分享

初中數(shù)學八年級重點

 八年級的數(shù)學是承上啟下的一個年級,所以重點知識有很多,小編整理了相關(guān)資料,希望能幫助到您。

  第一章 勾股定理

  1、勾股定理

  直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。

  3、勾股數(shù)

  滿足的三個正整數(shù),稱為勾股數(shù)。

  常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))

  第二章 實數(shù)

  1、實數(shù)的概念及分類

 ?、賹崝?shù)的分類

初中數(shù)學八年級重點

  ②無理數(shù)

  無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

  開方開不盡的數(shù),如 √7 ,3 √2等;

  有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如π /₃+8等;

  有特定結(jié)構(gòu)的數(shù),如0.1010010001…等;

  某些三角函數(shù)值,如sin60°等

  2、實數(shù)的倒數(shù)、相反數(shù)和絕對值

 ?、傧喾磾?shù)

  實數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

 ?、诮^對值

  在數(shù)軸上,一個數(shù)所對應的點與原點的距離,叫做該數(shù)的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  ③倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。

  ④數(shù)軸

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應的,并能靈活運用。

 ?、莨浪?/p>

  3、平方根、算數(shù)平方根和立方根

 ?、偎阈g(shù)平方根

  一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。

  性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,0的算術(shù)平方根是0。

 ?、谄椒礁?/p>

  一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。

  性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。

  開平方求一個數(shù)a的平方根的運算,叫做開平方。注意 √a的雙重非負性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a 的立方根(或三次方根)。

  表示方法:記作 3 √a

  性質(zhì):一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,這說明三次根號內(nèi)的負號可以移到根號外面。

  4、實數(shù)大小的比較

  ①實數(shù)比較大小

  正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);

  數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

  兩個負數(shù),絕對值大的反而小。

 ?、趯崝?shù)大小比較的幾種常用方法

  數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

  求差比較:設a、b是實數(shù) a-b>0↔a>b; a-b=0↔a=b; a-b<0↔a

  求商比較法:設a、b是兩正實數(shù),

  絕對值比較法:設a、b是兩負實數(shù),則∣a∣>∣b∣↔a

  平方法:設a、b是兩負實數(shù),則 a2>b2↔a

  5、算術(shù)平方根有關(guān)計算(二次根式)

 ?、俸卸胃枴?√ ”;被開方數(shù)a必須是非負數(shù)。

 ?、谛再|(zhì):

  ③運算結(jié)果若含有“ √ ”形式,必須滿足:

  被開方數(shù)的因數(shù)是整數(shù),因式是整式

  被開方數(shù)中不含能開得盡方的因數(shù)或因式

  6、實數(shù)的運算

 ?、倭N運算:加、減、乘、除、乘方 、開方。

 ?、趯崝?shù)的運算順序

  先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

 ?、圻\算律

  加法交換律 a+b= b+a

  加法結(jié)合律 (a+b)+c= a+( b+c )

  乘法交換律 ab= ba

  乘法結(jié)合律 (ab)c = a( bc )

  乘法對加法的分配律 a( b+c )=ab+ac

  第三章 位置與坐標

  1、確定位置

  在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。

  2、平面直角坐標系及有關(guān)概念

 ?、倨矫嬷苯亲鴺讼?/p>

  在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

 ?、谧鴺溯S和象限

  為了便于描述坐標平面內(nèi)點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。

 ?、埸c的坐標的概念

  對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數(shù)a,b分別叫做點P的橫坐標、縱坐標,有序數(shù)對(a,b)叫做點P的坐標。

  點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內(nèi)點的坐標是有序?qū)崝?shù)對,(a,b)和(b,a)是兩個不同點的坐標。

  平面內(nèi)點的與有序?qū)崝?shù)對是一一對應的。

  ④不同位置的點的坐標的特征

  a、各象限內(nèi)點的坐標的特征

  點P(x,y)在第一象限→ x>0,y>0

  點P(x,y)在第二象限 → x<0,y>0

  點P(x,y)在第三象限 → x<0,y<0

  點P(x,y)在第四象限 → x>0,y<0

  b、坐標軸上的點的特征

  點P(x,y)在x軸上 → y=0,x為任意實數(shù)

  點P(x,y)在y軸上 → x=0,y為任意實數(shù)

  點P(x,y)既在x軸上,又在y軸上→ x,y同時為零,即點P坐標為(0,0)即原點

  c、兩條坐標軸夾角平分線上點的坐標的特征

  點P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等

  點P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數(shù)

  d、和坐標軸平行的直線上點的坐標的特征

  位于平行于x軸的直線上的各點的縱坐標相同。

  位于平行于y軸的直線上的各點的橫坐標相同。

  e、關(guān)于x軸、y軸或原點對稱的點的坐標的特征

  點P與點p’關(guān)于x軸對稱 橫坐標相等,縱坐標互為相反數(shù),即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)

  點P與點p’關(guān)于y軸對稱 縱坐標相等,橫坐標互為相反數(shù),即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)

  點P與點p’關(guān)于原點對稱,橫、縱坐標均互為相反數(shù),即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y)

  f、點到坐標軸及原點的距離

  點P(x,y)到坐標軸及原點的距離:

  點P(x,y)到x軸的距離等于 ∣y∣

  點P(x,y)到y(tǒng)軸的距離等于 ∣x∣

  點P(x,y)到原點的距離等于 √x2+y2

  3、坐標變化與圖形變化的規(guī)律

初中數(shù)學八年級重點

  第四章 一次函數(shù)

  1、函數(shù)

  一般地,在某一變化過程中有兩個變量x與y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。

  2、自變量取值范圍

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實數(shù)),分式(分母不為0)、二次根式(被開方數(shù)為非負數(shù))、實際意義幾方面考慮。

  3、函數(shù)的三種表示法及其優(yōu)缺點

  關(guān)系式(解析)法

  兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做關(guān)系式(解析)法。

  列表法

  把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  圖象法

  用圖象表示函數(shù)關(guān)系的方法叫做圖象法。

  4、由函數(shù)關(guān)系式畫其圖像的一般步驟

  列表:列表給出自變量與函數(shù)的一些對應值。

  描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點。

  連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

  5、正比例函數(shù)和一次函數(shù)

  ①正比例函數(shù)和一次函數(shù)的概念

  一般地,若兩個變量x,y間的關(guān)系可以表示成y=kx+b (k,b為常數(shù),k不等于 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。

  特別地,當一次函數(shù)y=kx+b中的b=0時(k為常數(shù),k 不等于0),稱y是x的正比例函數(shù)。

  ②一次函數(shù)的圖像:

  所有一次函數(shù)的圖像都是一條直線。

  ③一次函數(shù)、正比例函數(shù)圖像的主要特征

  一次函數(shù)y=kx+b的圖像是經(jīng)過點(0,b)的直線;

  正比例函數(shù)y=kx的圖像是經(jīng)過原點(0,0)的直線。

初中數(shù)學八年級重點

 ?、苷壤瘮?shù)的性質(zhì)

  一般地,正比例函數(shù) 有下列性質(zhì):

  當k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;

  當k<0時,圖像經(jīng)過第二、四象限,y隨x的增大而減小。

 ?、菀淮魏瘮?shù)的性質(zhì)

  一般地,一次函數(shù) 有下列性質(zhì):

  當k>0時,y隨x的增大而增大;

  當k<0時,y隨x的增大而減小。

 ?、拚壤瘮?shù)和一次函數(shù)解析式的確定

  確定一個正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k 不等于0)中的常數(shù)k。

  確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k 不等于0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法.

 ?、咭淮魏瘮?shù)與一元一次方程的關(guān)系

  任何一個一元一次方程都可轉(zhuǎn)化為:kx+b=0(k、b為常數(shù),k≠0)的形式.而一次函數(shù)解析式形式正是y=kx+b(k、b為常數(shù),k≠0).當函數(shù)值為0時,即kx+b=0就與一元一次方程完全相同.

  結(jié)論:由于任何一元一次方程都可轉(zhuǎn)化為kx+b=0(k、b為常數(shù),k≠0)的形式.所以解一元一次方程可以轉(zhuǎn)化為:當一次函數(shù)值為0時,求相應的自變量的值.

  從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值.

  第五章 二元一次方程組

  1、二元一次方程

 ?、俣淮畏匠?/p>

  含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的整式方程叫做二元一次方程。

 ?、诙淮畏匠痰慕?/p>

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  2、二元一次方程組

 ?、俸袃蓚€未知數(shù)的兩個一次方程所組成的一組方程,叫做二元一次方程組。

 ?、诙淮畏匠探M的解

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

 ?、鄱淮畏匠探M的解法

  代入(消元)法

  加減(消元)法

  ④一次函數(shù)與二元一次方程(組)的關(guān)系:

  一次函數(shù)與二元一次方程的關(guān)系:

  直線y=kx+b上任意一點的坐標都是它所對應的二元一次方程kx- y+b=0的解

  一次函數(shù)與二元一次方程組的關(guān)系:

  二元一次方程組

  的解可看作兩個一次函數(shù)

  和 的圖象的交點。

  當函數(shù)圖象有交點時,說明相應的二元一次方程組有解;

  當函數(shù)圖象(直線)平行即無交點時,說明相應的二元一次方程組無解。

  第六章 數(shù)據(jù)的分析

  1、刻畫數(shù)據(jù)的集中趨勢(平均水平)的量:平均數(shù) 、眾數(shù)、中位數(shù)

  2、平均數(shù)

  平均數(shù):一般地,對于n個數(shù),我們把它們的和與n之商叫做這n個數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

  加權(quán)平均數(shù)。

  3、眾數(shù)

  一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。

  4、中位數(shù)

  一般地,將一組數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

  第七章 平行線的證明

  1、平行線的性質(zhì)

  一般地,如果兩條線互相平行的直線被第三條直線所截,那么同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補.

  也可以簡單的說成:

  兩直線平行,同位角相等;

  兩直線平行,內(nèi)錯角相等;

  兩直線平行,同旁內(nèi)角互補。

  2、判定平行線

  兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行.

  也可以簡單說成:

  同位角相等兩直線平行 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;如果同旁內(nèi)角互補,那么這兩條直線平行.

  其他兩條可以簡單說成:

  內(nèi)錯角相等兩直線平行

  同旁內(nèi)角相等兩直線平行


初中數(shù)學八年級重點相關(guān)文章:

1.初二數(shù)學下冊重點知識總結(jié)

2.初二下學期數(shù)學知識點總結(jié)

3.初二數(shù)學下冊知識點總結(jié)

4.初二數(shù)學上冊知識點總結(jié)

89758