數學初二必背的知識點
數學源自古希臘語,是研究數量、結構、變化、空間以及信息等概念的一門學科。下面小編為大家?guī)頂祵W初二必背的知識點,歡迎大家參考閱讀,希望大家喜歡!
數學初二必背的知識點
第一章勾股定理
1、探索勾股定理
①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
①如果三角形的三邊長a b c滿足a2+b2=c2,那么這個三角形一定是直角三角形
3、勾股定理的應用
第二章實數
1、認識無理數
①有理數:總是可以用有限小數和無限循環(huán)小數表示
②無理數:無限不循環(huán)小數
2、平方根
①算數平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x就叫做a的算數平方根
②特別地,我們規(guī)定:0的算數平方根是0
③平方根:一般地,如果一個數x的平方等于a,即x2=a。那么這個數x就叫做a的平方根,也叫做二次方根
④一個正數有兩個平方根;0只有一個平方根,它是0本身;負數沒有平方根
⑤正數有兩個平方根,一個是a的算數平方,另一個是—,它們互為相反數,這兩個平方根合起來可記作±
⑥開平方:求一個數a的平方根的運算叫做開平方,a叫做被開方數
3、立方根
①立方根:一般地,如果一個數x的立方等于a,即x3=a,那么這個數x就叫做a的立方根,也叫三次方根
②每個數都有一個立方根,正數的立方根是正數;0立方根是0;負數的立方根是負數。
③開立方:求一個數a的立方根的運算叫做開立方,a叫做被開方數
4、估算
①估算,一般結果是相對復雜的小數,估算有精確位數
5、用計算機開平方
6、實數
①實數:有理數和無理數的統(tǒng)稱
②實數也可以分為正實數、0、負實數
③每一個實數都可以在數軸上表示,數軸上每一個點都對應一個實數,在數軸上,右邊的點永遠比左邊的點表示的數大
7、二次根式
①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數
② =(a≥0,b≥0),=(a≥0,b>0)
③最簡二次根式:一般地,被開方數不含分母,也不含能開的盡方的因數或因式,這樣的二次根式,叫做最簡二次根式
④化簡時,通常要求最終結果中分母不含有根號,而且各個二次根式時最簡二次根式
第三章位置與坐標
1、確定位置
①在平面內,確定一個物體的位置一般需要兩個數據
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系
②通常地,兩條數軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統(tǒng)稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限
⑤在直角坐標系中,對于平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對于任意一個有序實數對,都有平面上唯一的一點與它對應
3、軸對稱與坐標變化
①關于x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數
第四章一次函數
1、函數
①一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應,那么我們稱y是x的函數其中x是自變量
②表示函數的方法一般有:列表法、關系式法和圖象法
③對于自變量在可取值范圍內的一個確定的值a,函數有唯一確定的對應值,這個對應值稱為當自變量等于a的函數值
2、一次函數與正比例函數
①若兩個變量x,y間的對應關系可以表示成y=kx+b(k、b為常數,k≠0)的形式,則稱y是x的一次函數,特別的,當b=0時,稱y是x的正比例函數
3、一次函數的圖像
①正比例函數y=kx的圖像是一條經過原點(0,0)的直線。因此,畫正比例函數圖像是,只要再確定一點,過這個點與原點畫直線就可以了
②在正比例函數y=kx中,當k>0時,y的值隨著x值的增大而減小;當k<0時,y的值隨著x的值增大而減小
③一次函數y=kx+b的圖像是一條直線,因此畫一次函數圖像時,只要確定兩個點,再過這兩點畫直線就可以了。一次函數y=kx+b的圖像也稱為直線y=kx+b
④一次函數y=kx+b的圖像經過點(0,b)。當k>0時,y的值隨著x值的增大而增大;當k<0時,y的值隨著x值的增大而減小
4、一次函數的應用
①一般地,當一次函數y=kx+b的函數值為0時,相應的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數y=kx+b的圖像與x軸交點的橫坐標就是方程kx+b=0
第五章二元一次方程組
1、認識二元一次方程組
①含有兩個未知數,并且所含有未知數的項的次數都是1的方程叫做二元一次方程
②共含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組
③二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解
2、求解二元一次方程組
①將其中一個方程中的某個未知數用含有另一個未知數的代數式表示出來,并代入另個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法
②通過兩式子加減,消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法
3、應用二元一次方程組
①雞兔同籠
4、應用二元一次方程組
①增減收支
5、應用二元一次方程組
①里程碑上的數
6、二元一次方程組與一次函數
①一般地,以一個二元一次方程的解為坐標的點組成的圖像與相應的一次函數的圖像相同,是一條直線
②一般地,從圖形的角度看,確定兩條直線相交點的坐標,相當于求相應的二元一次方程組的解,解一個二元一次方程組相當于確定相應兩條直線交點的坐標
7、用二元一次方程組確定一次函數表達式
①先設出函數表達式,再根據所給條件確定表達式中未知的系數,從而得到函數表達式的方法,叫做待定系數法。
8、三元一次方程組
①在一個方程組中,各個式子都含有三個未知數,并且所含有未知數的項的次數都是1,這樣的方程叫做三元一次方程
②像這樣,共含有三個未知數的三個一次方程所組成的一組方程,叫做三元一次方程組
③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解。
第六章數據的分析
1、平均數
①一般地,對于n個數x1x2.....xn,我們把(x1+x2+···+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的“重要程度”未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數
②一組數據中出現次數最多的那個數據叫做這組數據的眾數
③平均數、中位數和眾數都是描述數據集中趨勢的統(tǒng)計量
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義
3、從統(tǒng)計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對于集中趨勢的偏離情況。一組數據中最大數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統(tǒng)計量
②數學上,數據的離散程度還可以用方差或標準差刻畫
③方差是各個數據與平均數差的平方的平均數
④其中是x1x2......xn平均數,s2是方差,而標準差就是方差的算術平方根
⑤一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩(wěn)定。
第七章平行線的證明
1、為什么要證明
①實驗、觀察、歸納得到的結論可能正確,也可能不正確,因此,要判斷一個數學結論是否正確,僅僅依靠實驗、觀察、歸納是不夠的,必須進行有根有據的證明
2、定義與命題
①證明時,為了交流方便,必須對某些名稱和術語形成共同的認識,為此,就要對名稱和術語的含義加以描述,做出明確的規(guī)定,也就是給它們的定義
②判斷一件事情的句子,叫做命題
③一般地,每個命題都由條件和結論兩部分組成。條件是已知的選項,結論是已知選項推出的事項。命題通??梢詫懗伞叭绻?...那么....”的形式,其中“如果”引出的部分是條件,“那么”引出的部分是結論
④正確的命題稱為真命題,不正確的命題稱為假命題
⑤要說明一個命題是假命題,常??梢耘e出一個例子,使它具備命題的條件,而不具有命題的結論,這種例子稱為反例
⑥歐幾里得在編寫《原本》時,挑選了一部分數學名詞和一部分公認的真命題作為證實其他命題的出發(fā)點和依據。其中數學名詞稱為原名,公認的真命題稱為公理,除了公理外,其他命題的真假都需要通過演繹推理的方法進行判斷
⑦演繹推理的過程稱為證明,經過證明的真命題稱為定理,每個定理都只能用公理、定義和已經證明為真的命題來證明
a.本套教科書選用九條基本事實作為證明的出發(fā)點和依據,其中八條是:兩點確定一條直線
b.兩點之間線段最短
c.同一平面內,過一點有且只有一條直線與已知直線垂直
d.兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(簡述為:同位角相等,兩直線平行)
e.過直線外一點有且只有一條直線與這條直線平行
f.兩邊及其夾角分別相等的兩個三角形全等
g.兩角及其夾邊分別相等的兩個三角形全等
h.三邊分別相等的兩個三角形全等
⑧此外,數與式的運算律和運算法則、等式的有關性質,以及反映大小關系的有關性質都可以作為證明的依據
⑨ 定理:同角(等角)的補角相等
同角(等角)的余角相等
三角形的任意兩邊之和大于第三邊
對頂角相等
3、平行線的判定
① 定理:兩條直線被第三條直線所截,如果內錯角相等,那么這兩條直線平行,簡述為:內錯角相等,兩直線平行
② 定理:兩條直線被第三條直線所截,如果同旁內角互補,那么這兩條直線平行,簡述為:同旁內角互補,兩直線平行。
4、平行線的性質
① 定理:兩條平行直線被第三條直線所截,同位角相等。簡述為:兩直線平行,同位角相等
② 定理:兩條平行直線被第三條直線所截,內錯角相等。簡述為:兩直線平行,內錯角相等
③ 定理:兩條平行直線被第三條直線所截,同旁內角互補。簡述為:兩直線平行,同旁內角互補
④ 定理:平行于同一條直線的兩條直線平行
5、三角形內角和定理
① 三角形內角和定理:三角形的內角和等于180°
② 定理:三角形的一個外角等于和它不相鄰的兩個內角的和
定理:三角形的一個外角大于任何一個和它不相鄰的內角
③ 我們通過三角形的內角和定理直接推導出兩個新定理。像這樣,由一個基本事實或定理直接推出的定理,叫做這個基本事實或定理的推論,推論可以當定理使用。
數學初二基礎知識點
平方根與立方根知識點
平方根:
概括1:一般地,如果一個數的平方等于a,這個數就叫做a的平方根(或二次方根)。就是說,如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。
因為(±23)=529,所以±23是529的平方根。問:(1)16,49,100,1100都是正數,它們有幾個平方根?平方根之間有什么關系?(2)0的平方根是什么?
概括2:一個正數有兩個平方根,它們互為相反數;0有一個平方根,它是0本身;負數沒有平方根。
概括3:求一個數a(a≥0)的平方根的運算,叫做開平方。
開平方運算是已知指數和冪求底數。平方與開平方互為逆運算。一個數可以是正數、負數或者是0,它的平方數只有一個,正數或負數的平方都是正數,0的平方是0。但一個正數的平方根卻有兩個,這兩個數互為相反數,0的平方根是0。負數沒有平方根。因為平方與開平方互為逆運算,因此我們可以通過平方運算來求一個數的平方根,也可以通過平方運算來檢驗一個數是不是另一個數的平方根。
一、算術平方根的概念
正數a有兩個平方根(表示為?根,表示為a。0的平方根也叫做0的算術平方根,因此0的算術平方根是0,即0?!笔撬阈g平方根的符號,a就表示a的算術平方根。a的意義有兩點:a,我們把其中正的平方根,叫做a的算術平方
(1)被開方數a表示非負數,即a≥0;
(2)a也表示非負數,即a≥0。也就是說,非負數的“算術”平方根是非負數。負數不存在算術平方根,即a<0時,a無意義。
如:=3,8是64的算術平方根,6無意義。9既表示對9進行開平方運算,也表示9的正的平方根。
二、平方根與算術平方根的區(qū)別在于
①定義不同;
②個數不同:一個正數有兩個平方根,而一個正數的算術平方根只有一個;③表示方法不同:正數a的平方根表示為?a,正數a的算術平方根表示為a;④取值范圍不同:正數的算術平方根一定是正數,正數的平方根是一正一負.⑤0的平方根與算術平方根都是0.
三、例題講解:
例1、求下列各數的算術平方根:
(1)100;
(2)49;
(3)0.8164
注意:由于正數的算術平方根是正數,零的算術平方根是零,可將它們概括成:非負數的算
術平方根是非負數,即當a≥0時,a≥0(當a<0時,a無意義)
用幾何圖形可以直觀地表示算術平方根的意義如有一個面積為a(a應是非負數)、邊長為
的正方形就表示a的算術平方根。
這里需要說明的是,算術平方根的符號“”不僅是一個運算符號,如a≥0時,a表示對非負數a進行開平方運算,另一方面也是一個性質符號,即表示非負數a的正的平方根。
3、立方根
(1)立方根的定義:如果一個數x的立方等于a,這個數叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根
(2)一個數a的立方根,讀作:“三次根號a”,其中a叫被開方數,3叫根指數,不能省略,若省略表示平方。
(3)一個正數有一個正的立方根;0有一個立方根,是它本身;一個負數有一個負的立方根;任何數都有的立方根。
(4)利用開立方和立方互為逆運算關系,求一個數的立方根,就可以利用這種互逆關系,檢驗其正確性,求負數的立方根,可以先求出這個負數的絕對值的立方根,再取其相反數。
數學初二知識點總結
1全等三角形的對應邊、對應角相等
2邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
3角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
5邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
7定理1在角的平分線上的點到這個角的兩邊的距離相等
8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
9角的平分線是到角的兩邊距離相等的所有點的集合
10等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
23推論3等邊三角形的各角都相等,并且每一個角都等于60°
24等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
25推論1三個角都相等的三角形是等邊三角形
26推論2有一個角等于60°的等腰三角形是等邊三角形
27在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
28直角三角形斜邊上的中線等于斜邊上的一半
29定理線段垂直平分線上的點和這條線段兩個端點的距離相等
30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
數學初二必背的知識點相關文章: