學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級數(shù)學(xué)>

初二數(shù)學(xué)必考知識點歸納

時間: 舒淇4599 分享

學(xué)數(shù)學(xué)就是在學(xué)一種思維體系,在日常教導(dǎo)孩子的過程中也要注重這一點。下面小編為大家?guī)沓醵?shù)學(xué)必考知識點歸納,歡迎大家參考閱讀,希望大家喜歡!

初二數(shù)學(xué)必考知識點歸納

軸對稱

一、知識框架:

二、知識概念:

1.基本概念:

⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.

⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱.

⑶線段的垂直平分線:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線.

⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.

2.基本性質(zhì):

⑴對稱的性質(zhì):

①不管是軸對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點所連線段的垂直平分線.

②對稱的圖形都全等.

⑵線段垂直平分線的性質(zhì):

①線段垂直平分線上的點與這條線段兩個端點的距離相等.

②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.

⑶關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)性質(zhì)

①點P(x,y)關(guān)于x軸對稱的點的坐標(biāo)為P'(x,y).

②點P(x,y)關(guān)于y軸對稱的點的坐標(biāo)為P"(x,y).

⑷等腰三角形的性質(zhì):

①等腰三角形兩腰相等.

②等腰三角形兩底角相等(等邊對等角).

③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.

④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條).

⑸等邊三角形的性質(zhì):

①等邊三角形三邊都相等.

②等邊三角形三個內(nèi)角都相等,都等于60°

③等邊三角形每條邊上都存在三線合一.

④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).

3.基本判定:

⑴等腰三角形的判定:

①有兩條邊相等的三角形是等腰三角形.

②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).

⑵等邊三角形的判定:

①三條邊都相等的三角形是等邊三角形.

②三個角都相等的三角形是等邊三角形.

③有一個角是60°的等腰三角形是等邊三角形.

4.基本方法

⑴做已知直線的垂線:

⑵做已知線段的垂直平分線:

⑶作對稱軸:連接兩個對應(yīng)點,作所連線段的垂直平分線.

⑷作已知圖形關(guān)于某直線的對稱圖形:

⑸在直線上做一點,使它到該直線同側(cè)的兩個已知點的距離之和最短.

初二數(shù)學(xué)會考知識點總結(jié)

一、 在平面內(nèi),確定物體的位置一般需要兩個數(shù)據(jù)。

二、平面直角坐標(biāo)系及有關(guān)概念

1、平面直角坐標(biāo)系

在平面內(nèi),兩條互相垂直且有公共原點的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點O稱為直角坐標(biāo)系的原點;建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。

2、為了便于描述坐標(biāo)平面內(nèi)點的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

注意:x軸和y軸上的點(坐標(biāo)軸上的點),不屬于任何一個象限。

3、點的坐標(biāo)的概念

對于平面內(nèi)任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應(yīng)的數(shù)a,b分別叫做點P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(a,b)叫做點P的坐標(biāo)。

點的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有,分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng) 時,(a,b)和(b,a)是兩個不同點的坐標(biāo)。

平面內(nèi)點的與有序?qū)崝?shù)對是一一對應(yīng)的。

4、不同位置的點的坐標(biāo)的特征

(1)、各象限內(nèi)點的坐標(biāo)的特征

點P(x,y)在第一象限:x0

點P(x,y)在第二象限:x0

點P(x,y)在第三象限:x0

點P(x,y)在第四象限:x0

(2)、坐標(biāo)軸上的點的特征

點P(x,y)在x軸上,y=0 ,x為任意實數(shù)

點P(x,y)在y軸上,x=0 ,y為任意實數(shù)

點P(x,y)既在x軸上,又在y軸上, x,y同時為零,即點P坐標(biāo)為(0,0)即原點

(3)、兩條坐標(biāo)軸夾角平分線上點的坐標(biāo)的特征

點P(x,y)在第一、三象限夾角平分線(直線y=x)上,x與y相等

點P(x,y)在第二、四象限夾角平分線上,x與y互為相反數(shù)

(4)、和坐標(biāo)軸平行的直線上點的坐標(biāo)的特征

位于平行于x軸的直線上的各點的縱坐標(biāo)相同。

位于平行于y軸的直線上的各點的橫坐標(biāo)相同。

(5)、關(guān)于x軸、y軸或原點對稱的點的坐標(biāo)的特征

點P與點p關(guān)于x軸對稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于x軸的對稱點為P(x,-y)

點P與點p關(guān)于y軸對稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點P(x,y)關(guān)于y軸的對稱點為P(-x,y)

點P與點p關(guān)于原點對稱 橫、縱坐標(biāo)均互為相反數(shù),即點P(x,y)關(guān)于原點的對稱點為P(-x,-y)

(6)、點到坐標(biāo)軸及原點的距離

點P(x,y)到坐標(biāo)軸及原點的距離:

(1)點P(x,y)到x軸的距離等于|y|;

(2)點P(x,y)到y(tǒng)軸的距離等于|x|;

(3)點P(x,y)到原點的距離等于根號x_x+y_y

三、坐標(biāo)變化與圖形變化的規(guī)律:

坐標(biāo)(x,y)的變化

圖形的變化

x a或y a

被橫向或縱向拉長(壓縮)為原來的a倍

x a,y a

放大(縮小)為原來的a倍

x (-1)或y (-1)

關(guān)于y軸或x軸對稱

x (-1),y (-1)

關(guān)于原點成中心對稱

x +a或y+ a

沿x軸或y軸平移a個單位

x +a,y+ a

沿x軸平移a個單位,再沿y軸平移a個單

初二數(shù)學(xué)考試知識點

(一)提公因式法

1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當(dāng)多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當(dāng)多項式各項的公因式是隱含的時候,要把多項式進行適當(dāng)?shù)淖冃?,或改變符號,直到可確定多項式的公因式.

2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:

1.必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于

一次項的系數(shù).

2.將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:

①列出常數(shù)項分解成兩個因數(shù)的積各種可能情況;

②嘗試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù).

3.將原多項式分解成(x+q)(x+p)的形式.

(二)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,

(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

(三)分數(shù)的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統(tǒng)一起來.

2.通分和約分都是依據(jù)分式的基本性質(zhì)進行變形,其共同點是保持分式的值不變.

3.一般地,通分結(jié)果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準(zhǔn)備.

4.通分的依據(jù):分式的基本性質(zhì).

5.通分的關(guān)鍵:確定幾個分式的'公分母.

通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.

6.類比分數(shù)的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉(zhuǎn)化為整式運算。

8.異分母的分式加減法法則:異分母的分式相加減,先通分,變?yōu)橥帜傅姆质?,然后再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.

10.對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.

12.作為最后結(jié)果,如果是分式則應(yīng)該是最簡分式.

(四)含有字母系數(shù)的一元一次方程

1.含有字母系數(shù)的一元一次方程

引例:一數(shù)的a倍(a≠0)等于b,求這個數(shù)。用x表示這個數(shù),根據(jù)題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數(shù),a和b是用字母表示的已知數(shù)。對x來說,字母a是x的系數(shù),b是常數(shù)項。這個方程就是一個含有字母系數(shù)的一元一次方程。

含有字母系數(shù)的方程的解法與以前學(xué)過的只含有數(shù)字系數(shù)的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。

初二數(shù)學(xué)必考知識點歸納相關(guān)文章

八年級數(shù)學(xué)主要知識點

八年級數(shù)學(xué)知識點梳理總結(jié)2022

八年級數(shù)學(xué)知識點整理

初二數(shù)學(xué)知識點復(fù)習(xí)整理

初二數(shù)學(xué)必備知識點人教版

2022初二數(shù)學(xué)知識點歸納整理

初二數(shù)學(xué)知識點總結(jié)

初二數(shù)學(xué)知識點歸納大全

初二數(shù)學(xué)復(fù)習(xí)知識點筆記

初二數(shù)學(xué)考試知識點

1565806