高中數(shù)學說課稿(2)
高中數(shù)學說課稿:等腰三角形的性質(zhì)
一、教材分析
本節(jié)課是在學習了軸對稱圖形以及全等三角形的判定的基礎(chǔ)上進行的,主要學習等腰三角形的“等邊對等角”和“等腰三角形的三線合一”兩個性質(zhì)。本節(jié)內(nèi)容是對前面知識的深化和應用,它的性質(zhì)定理不僅是證明角相等、線段相等及兩直線互相垂直的依據(jù),而且也是后繼學習線段垂直平分線、等腰梯形的預備知識。因此,本節(jié)內(nèi)容在教材中處于非常重要的地位,起著承前啟后的作用。
二、教學目的
(一)知識目標:知道等腰三角形的定義及相關(guān)概念,理解等腰三角形的性質(zhì),會利用等腰三角形的性質(zhì)進行簡單的推理、判斷和計算。
(二)能力目標:通過實踐,觀察,證明等腰三角形性質(zhì),發(fā)展學生合情推理和演繹推理能力,通過運用等腰三角形的性質(zhì)解決有關(guān)問題,提高分析問題、解決問題能力。
(三)情感目標:在實際操作動手中激發(fā)學生的學習興趣,體驗幾何發(fā)現(xiàn)的樂趣,從而增強學生學數(shù)學、用數(shù)學的意識。
三、教學重、難點
(一)重點:等腰三角形的性質(zhì)的探究及應用
(二)難點:等腰三角形“三線合一”性質(zhì)的運用
四、教學方法
(一)教法:本節(jié)課采用了教具直觀教學法,聯(lián)想發(fā)現(xiàn)教學法,設(shè)疑思考法,逐步滲透法和師生交際相結(jié)合的方法。
(二)學法:本節(jié)課主要引導學生從已知的、熟悉的知識入手,讓學生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領(lǐng)域,從不同角度去分析、解決新問題,發(fā)掘不同層次學生的不同能力,從而達到發(fā)展學生思維能力和自學能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
五、教學過程
(一)創(chuàng)設(shè)情景,引入新知
我們學過三角形,你都知道哪些特殊的三角形?今天我們來學習其中的一種特殊的三角形 ----等腰三角形。
等腰三角形的有關(guān)概念,軸對稱圖形的有關(guān)概念。
提問:等腰三角形是不是軸對稱圖形?什么是它的對稱軸?
(二)實驗探索,大膽猜想
教師演示(模型)等腰三角形是軸對稱圖形的實驗,并讓學生做同樣的實驗,引導學生觀察重合部分,發(fā)現(xiàn)等腰三角形的一些性質(zhì)。
(三)證明猜想,形成定理
讓學生由實驗或演示指出各自的發(fā)現(xiàn),并加以引導,用規(guī)范的數(shù)學語言進行逐條歸納,最后得出等腰三角形的性質(zhì)定理1、2。
1.性質(zhì)定理1:
等腰三角形的兩個底角相等
在△ ABC中,∵AB=AC( ) ∴∠B= ∠C( )
2.性質(zhì)定理2:
等腰三角形的頂角平分線、底邊上的中線和高線互相重合
(1) ∵ AB=AC ∠1= ∠ 2 ( ) ∴BD=DC AD⊥BC ( )
(2) ∵ AB=AC BD=DC ( ) ∴ ∠1= ∠ 2 AD⊥BC ( )
(3) ∵ AB=AC AD⊥BC于D ( ) ∴ BD=DC ∠1= ∠ 2( )
(四)應用舉例,強化訓練
指導學生表述證明過程。
思考題:等腰三角形兩腰上的中線(高線)是否相等?為什么?
(五)歸納小結(jié),布置作業(yè)
1.歸納:
(1) 等腰三角形的性質(zhì)定理。
(2) 等邊三角形的性質(zhì)
(3) 利用等腰三角形的性質(zhì)定理可證明:兩角相等,兩線段相等,兩直線互相垂直。
(4) 聯(lián)想方法要經(jīng)常運用,對解題大有裨益。
2.作業(yè)布置:
(1)必做題:
書本課后作業(yè)
(2)選做題:搜集日常生活中應用等腰三角形的實例,并思考這些實例運用了等腰三角形的哪些性質(zhì)?
猜你感興趣的:
高中數(shù)學說課稿(2)
下一篇:高中數(shù)學說課稿模板