學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 各學(xué)科學(xué)習(xí)方法 > 數(shù)學(xué)學(xué)習(xí)方法 > 初一上冊(cè)數(shù)學(xué)從算式到方程試題

初一上冊(cè)數(shù)學(xué)從算式到方程試題

時(shí)間: 朝燕820 分享

初一上冊(cè)數(shù)學(xué)從算式到方程試題

  在初一上冊(cè)數(shù)學(xué)考試快要到來(lái)的時(shí)候,學(xué)生們要如何復(fù)習(xí)從算式到方程應(yīng)該這章節(jié)呢?下面請(qǐng)欣賞學(xué)習(xí)啦網(wǎng)絡(luò)編輯了初一上冊(cè)數(shù)學(xué)從算式到方程試題,希望你能夠喜歡!

  初一上冊(cè)數(shù)學(xué)從算式到方程試題及答案

  一、選擇題(共11小題)

  1.已知m=1,n=0,則代數(shù)式m+n的值為(  )

  A.﹣1 B.1 C.﹣2 D.2

  【考點(diǎn)】代數(shù)式求值.

  【分析】把m、n的值代入代數(shù)式進(jìn)行計(jì)算即可得解.

  【解答】解:當(dāng)m=1,n=0時(shí),m+n=1+0=1.

  故選B.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,把m、n的值代入即可,比較簡(jiǎn)單.

  2.已知x2﹣2x﹣8=0,則3x2﹣6x﹣18的值為(  )

  A.54 B.6 C.﹣10 D.﹣18

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】計(jì)算題.

  【分析】所求式子前兩項(xiàng)提取3變形后,將已知等式變形后代入計(jì)算即可求出值.

  【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,

  ∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.

  故選B.

  【點(diǎn)評(píng)】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.

  3.把方程 變形為x=2,其依據(jù)是(  )

  A.等式的性質(zhì)1 B.等式的性質(zhì)2

  C.分式的基本性質(zhì) D.不等式的性質(zhì)1

  【考點(diǎn)】等式的性質(zhì).

  【分析】根據(jù)等式的基本性質(zhì),對(duì)原式進(jìn)行分析即可.

  【解答】解:把方程 變形為x=2,其依據(jù)是等式的性質(zhì)2;

  故選:B.

  【點(diǎn)評(píng)】本題主要考查了等式的基本性質(zhì),等式性質(zhì):1、等式的兩邊同時(shí)加上或減去同一個(gè)數(shù)或字母,等式仍成立;2、等式的兩邊同時(shí)乘以或除以同一個(gè)不為0數(shù)或字母,等式仍成立.

  4.已知x2﹣2x﹣3=0,則2x2﹣4x的值為(  )

  A.﹣6 B.6 C.﹣2或6 D.﹣2或30

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】整體思想.

  【分析】方程兩邊同時(shí)乘以2,再化出2x2﹣4x求值.

  【解答】解:x2﹣2x﹣3=0

  2×(x2﹣2x﹣3)=0

  2×(x2﹣2x)﹣6=0

  2x2﹣4x=6

  故選:B.

  【點(diǎn)評(píng)】本題考查代數(shù)式求值,解題的關(guān)鍵是化出要求的2x2﹣4x.

  5.若m﹣n=﹣1,則(m﹣n)2﹣2m+2n的值是(  )

  A.3 B.2 C.1 D.﹣1

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】計(jì)算題.

  【分析】所求式子后兩項(xiàng)提取﹣2變形后,將m﹣n的值代入計(jì)算即可求出值.

  【解答】解:∵m﹣n=﹣1,

  ∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=1+2=3.

  故選:A.

  【點(diǎn)評(píng)】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.

  6.已知x﹣ =3,則4﹣ x2+ x的值為(  )

  A.1 B. C. D.

  【考點(diǎn)】代數(shù)式求值;分式的混合運(yùn)算.

  【專(zhuān)題】計(jì)算題.

  【分析】所求式子后兩項(xiàng)提取公因式變形后,將已知等式去分母變形后代入計(jì)算即可求出值.

  【解答】解:∵x﹣ =3,

  ∴x2﹣1=3x

  ∴x2﹣3x=1,

  ∴原式=4﹣ (x2﹣3x)=4﹣ = .

  故選:D.

  【點(diǎn)評(píng)】此題考查了代數(shù)式求值,將已知與所求式子進(jìn)行適當(dāng)?shù)淖冃问墙獗绢}的關(guān)鍵.

  7.按如圖的運(yùn)算程序,能使輸出結(jié)果為3的x,y的值是(  )

  A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣9

  【考點(diǎn)】代數(shù)式求值;二元一次方程的解.

  【專(zhuān)題】計(jì)算題.

  【分析】根據(jù)運(yùn)算程序列出方程,再根據(jù)二元一次方程的解的定義對(duì)各選項(xiàng)分析判斷利用排除法求解.

  【解答】解:由題意得,2x﹣y=3,

  A、x=5時(shí),y=7,故A選項(xiàng)錯(cuò)誤;

  B、x=3時(shí),y=3,故B選項(xiàng)錯(cuò)誤;

  C、x=﹣4時(shí),y=﹣11,故C選項(xiàng)錯(cuò)誤;

  D、x=﹣3時(shí),y=﹣9,故D選項(xiàng)正確.

  故選:D.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,主要利用了二元一次方程的解,理解運(yùn)算程序列出方程是解題的關(guān)鍵.

  8.若m+n=﹣1,則(m+n)2﹣2m﹣2n的值是(  )

  A.3 B.0 C.1 D.2

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】整體思想.

  【分析】把(m+n)看作一個(gè)整體并代入所求代數(shù)式進(jìn)行計(jì)算即可得解.

  【解答】解:∵m+n=﹣1,

  ∴(m+n)2﹣2m﹣2n

  =(m+n)2﹣2(m+n)

  =(﹣1)2﹣2×(﹣1)

  =1+2

  =3.

  故選:A.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.

  9.已知x﹣2y=3,則代數(shù)式6﹣2x+4y的值為(  )

  A.0 B.﹣1 C.﹣3 D.3

  【考點(diǎn)】代數(shù)式求值.

  【分析】先把6﹣2x+4y變形為6﹣2(x﹣2y),然后把x﹣2y=3整體代入計(jì)算即可.

  【解答】解:∵x﹣2y=3,

  ∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0

  故選:A.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值:先把所求的代數(shù)式根據(jù)已知條件進(jìn)行變形,然后利用整體的思想進(jìn)行計(jì)算.

  10.當(dāng)x=1時(shí),代數(shù)式 ax3﹣3bx+4的值是7,則當(dāng)x=﹣1時(shí),這個(gè)代數(shù)式的值是(  )

  A.7 B.3 C.1 D.﹣7

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】整體思想.

  【分析】把x=1代入代數(shù)式求出a、b的關(guān)系式,再把x=﹣1代入進(jìn)行計(jì)算即可得解.

  【解答】解:x=1時(shí), ax3﹣3bx+4= a﹣3b+4=7,

  解得 a﹣3b=3,

  當(dāng)x=﹣1時(shí), ax3﹣3bx+4=﹣ a+3b+4=﹣3+4=1.

  故選:C.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.

  11.一個(gè)運(yùn)算程序的示意圖,若開(kāi)始輸入x的值為81,則第2014次輸出的結(jié)果為(  )

  A.3 B.27 C.9 D.1

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】圖表型.

  【分析】根據(jù)運(yùn)算程序進(jìn)行計(jì)算,然后得到規(guī)律從第4次開(kāi)始,偶數(shù)次運(yùn)算輸出的結(jié)果是1,奇數(shù)次運(yùn)算輸出的結(jié)果是3,然后解答即可.

  【解答】解:第1次, ×81=27,

  第2次, ×27=9,

  第3次, ×9=3,

  第4次, ×3=1,

  第5次,1+2=3,

  第6次, ×3=1,

  …,

  依此類(lèi)推,偶數(shù)次運(yùn)算輸出的結(jié)果是1,奇數(shù)次運(yùn)算輸出的結(jié)果是3,

  ∵2014是偶數(shù),

  ∴第2014次輸出的結(jié)果為1.

  故選:D.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,根據(jù)運(yùn)算程序計(jì)算出從第4次開(kāi)始,偶數(shù)次運(yùn)算輸出的結(jié)果是1,奇數(shù)次運(yùn)算輸出的結(jié)果是3是解題的關(guān)鍵.

  二、填空題(共18小題)

  12.已知關(guān)于x的方程3a﹣x= +3的解為2,則代數(shù)式a2﹣2a+1的值是 1 .

  【考點(diǎn)】一元一次方程的解.

  【分析】先把x=2代入方程求出a的值,再把a(bǔ)的值代入代數(shù)式進(jìn)行計(jì)算即可.

  【解答】解:∵關(guān)于x的方程3a﹣x= +3的解為2,

  ∴3a﹣2= +3,解得a=2,

  ∴原式=4﹣4+1=1.

  故答案為:1.

  【點(diǎn)評(píng)】本題考查的是一元一次方程的解,熟知解一元一次方程的基本步驟是解答此題的關(guān)鍵.

  13.已知x=2是關(guān)于x的方程a(x+1)= a+x的解,則a的值是   .

  【考點(diǎn)】一元一次方程的解.

  【專(zhuān)題】計(jì)算題.

  【分析】把x=2代入方程計(jì)算即可求出a的值.

  【解答】解:把x=2代入方程得:3a= a+2,

  解得:a= .

  故答案為: .

  【點(diǎn)評(píng)】此題考查了一元一次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.

  14.按照如圖所示的操作步驟,若輸入的值為3,則輸出的值為 55 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】圖表型.

  【分析】根據(jù)運(yùn)算程序列式計(jì)算即可得解.

  【解答】解:由圖可知,輸入的值為3時(shí),(32+2)×5=(9+2)×5=55.

  故答案為:55.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,讀懂題目運(yùn)算程序是解題的關(guān)鍵.

  15.若a﹣2b=3,則2a﹣4b﹣5= 1 .

  【考點(diǎn)】代數(shù)式求值.

  【分析】把所求代數(shù)式轉(zhuǎn)化為含有(a﹣2b)形式的代數(shù)式,然后將a﹣2b=3整體代入并求值即可.

  【解答】解:2a﹣4b﹣5

  =2(a﹣2b)﹣5

  =2×3﹣5

  =1.

  故答案是:1.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值.代數(shù)式中的字母表示的數(shù)沒(méi)有明確告知,而是隱含在題設(shè)中,首先應(yīng)從題設(shè)中獲取代數(shù)式(a﹣2b)的值,然后利用“整體代入法”求代數(shù)式的值.

  16.(2013•日照)已知m2﹣m=6,則1﹣2m2+2m= ﹣11 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】整體思想.

  【分析】把m2﹣m看作一個(gè)整體,代入代數(shù)式進(jìn)行計(jì)算即可得解.

  【解答】解:∵m2﹣m=6,

  ∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.

  故答案為:﹣11.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.

  17.當(dāng)x=1時(shí),代數(shù)式x2+1= 2 .

  【考點(diǎn)】代數(shù)式求值.

  【分析】把x的值代入代數(shù)式進(jìn)行計(jì)算即可得解.

  【解答】解:x=1時(shí),x2+1=12+1=1+1=2.

  故答案為:2.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,是基礎(chǔ)題,準(zhǔn)確計(jì)算是解題的關(guān)鍵.

  18.若m+n=0,則2m+2n+1= 1 .

  【考點(diǎn)】代數(shù)式求值.

  【分析】把所求代數(shù)式轉(zhuǎn)化成已知條件的形式,然后整體代入進(jìn)行計(jì)算即可得解.

  【解答】解:∵m+n=0,

  ∴2m+2n+1=2(m+n)+1,

  =2×0+1,

  =0+1,

  =1.

  故答案為:1.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.

  19.按如圖所示的程序計(jì)算.若輸入x的值為3,則輸出的值為 ﹣3 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】圖表型.

  【分析】根據(jù)x的值是奇數(shù),代入下邊的關(guān)系式進(jìn)行計(jì)算即可得解.

  【解答】解:x=3時(shí),輸出的值為﹣x=﹣3.

  故答案為:﹣3.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,準(zhǔn)確選擇關(guān)系式是解題的關(guān)鍵.

  20.按照如圖所示的操作步驟,若輸入x的值為2,則輸出的值為 20 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】圖表型.

  【分析】根據(jù)運(yùn)算程序?qū)懗鏊闶?,然后代入?shù)據(jù)進(jìn)行計(jì)算即可得解.

  【解答】解:由圖可知,運(yùn)算程序?yàn)?x+3)2﹣5,

  當(dāng)x=2時(shí),(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.

  故答案為:20.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,是基礎(chǔ)題,根據(jù)圖表準(zhǔn)確寫(xiě)出運(yùn)算程序是解題的關(guān)鍵.

  21.已知關(guān)于x的方程2x+a﹣5=0的解是x=2,則a的值為 1 .

  【考點(diǎn)】一元一次方程的解.

  【分析】把x=2代入方程即可得到一個(gè)關(guān)于a的方程,解方程即可求解

  【解答】解:把x=2代入方程,得:4+a﹣5=0,

  解得:a=1.

  故答案是:1.

  【點(diǎn)評(píng)】本題考查了方程的解的定義,理解定義是關(guān)鍵.

  22.劉謙的魔術(shù)表演風(fēng)靡全國(guó),小明也學(xué)起了劉謙發(fā)明了一個(gè)魔術(shù)盒,當(dāng)任意實(shí)數(shù)對(duì)(a,b)進(jìn)入其中時(shí),會(huì)得到一個(gè)新的實(shí)數(shù):a2+b﹣1,例如把(3,﹣2)放入其中,就會(huì)得到32+(﹣2)﹣1=6.現(xiàn)將實(shí)數(shù)對(duì)(﹣1,3)放入其中,得到實(shí)數(shù)m,再將實(shí)數(shù)對(duì)(m,1)放入其中后,得到實(shí)數(shù)是 9 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】應(yīng)用題.

  【分析】觀察可看出未知數(shù)的值沒(méi)有直接給出,而是隱含在題中,需要找出規(guī)律,代入求解.

  【解答】解:根據(jù)所給規(guī)則:m=(﹣1)2+3﹣1=3

  ∴最后得到的實(shí)數(shù)是32+1﹣1=9.

  【點(diǎn)評(píng)】依照規(guī)則,首先計(jì)算m的值,再進(jìn)一步計(jì)算即可.隱含了整體的數(shù)學(xué)思想和正確運(yùn)算的能力.

  23.如果x=1時(shí),代數(shù)式2ax3+3bx+4的值是5,那么x=﹣1時(shí),代數(shù)式2ax3+3bx+4的值是 3 .

  【考點(diǎn)】代數(shù)式求值.

  【分析】將x=1代入代數(shù)式2ax3+3bx+4,令其值是5求出2a+3b的值,再將x=﹣1代入代數(shù)式2ax3+3bx+4,變形后代入計(jì)算即可求出值.

  【解答】解:∵x=1時(shí),代數(shù)式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,

  ∴x=﹣1時(shí),代數(shù)式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.

  故答案為:3

  【點(diǎn)評(píng)】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.

  24.若x2﹣2x=3,則代數(shù)式2x2﹣4x+3的值為 9 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】計(jì)算題.

  【分析】所求式子前兩項(xiàng)提取2變形后,將已知等式代入計(jì)算即可求出值.

  【解答】解:∵x2﹣2x=3,

  ∴2x2﹣4x+3=2(x2﹣2x)+3=6+3=9.

  故答案為:9

  【點(diǎn)評(píng)】此題考查了代數(shù)式求值,利用了整體代入的思想,是一道基本題型.

  25.若m2﹣2m﹣1=0,則代數(shù)式2m2﹣4m+3的值為 5 .

  【考點(diǎn)】代數(shù)式求值.

  【專(zhuān)題】整體思想.

  【分析】先求出m2﹣2m的值,然后把所求代數(shù)式整理出已知條件的形式并代入進(jìn)行計(jì)算即可得解.

  【解答】解:由m2﹣2m﹣1=0得m2﹣2m=1,

  所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=5.

  故答案為:5.

  【點(diǎn)評(píng)】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.

>>>下一頁(yè)更多有關(guān)“初一上冊(cè)數(shù)學(xué)從算式到方程試題”的內(nèi)容

1683067