學(xué)習(xí)啦>學(xué)習(xí)方法>通用學(xué)習(xí)方法>復(fù)習(xí)方法>

初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)歸納

時(shí)間: 欣怡1112 分享

  初二是個(gè)很關(guān)鍵的時(shí)期,尤其是數(shù)學(xué)的學(xué)習(xí)!!勾股定理、四邊形、函數(shù),可謂重點(diǎn)重重,這些知識(shí)點(diǎn)一定要掌握牢固!下面是學(xué)習(xí)啦小編分享給大家的初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn),希望大家喜歡!

  初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)一

  一、函數(shù)及其相關(guān)概念

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法:用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接

  正比例函數(shù)和一次函數(shù)

  1、正比例函數(shù)和一次函數(shù)的概念

  一般地,如果

  2、一次函數(shù)的圖像

  所有一次函數(shù)的圖像都是一條直線。

  3、一次函數(shù)、正比例函數(shù)圖像的主要特征:

  一次函數(shù)y=kx+b的圖像是經(jīng)過點(diǎn)(0,b)的直線;正比例函數(shù)y=kx的圖像是經(jīng)過原點(diǎn)(0,0)的直線。(如下圖)

  4. 正比例函數(shù)的性質(zhì)

  一般地,正比例函數(shù)y=kx有下列性質(zhì):

  (1)當(dāng)k>0時(shí),圖像經(jīng)過第一、三象限,y隨x的增大而增大;

  (2)當(dāng)k<0時(shí),圖像經(jīng)過第二、四象限,y隨x的增大而減小。

  5、一次函數(shù)的性質(zhì)

  一般地,一次函數(shù)y=kx+b有下列性質(zhì):

  (1)當(dāng)k>0時(shí),y隨x的增大而增大

  (2)當(dāng)k<0時(shí),y隨x的增大而減小

  6、正比例函數(shù)和一次函數(shù)解析式的確定

  確定一個(gè)正比例函數(shù),就是要確定正比例函數(shù)定義式y(tǒng)=kx(k≠0)中的常數(shù)k。確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k≠0)中的常數(shù)k和b。解這類問題的一般方法是待定系數(shù)法。

  圖像分析:

  k>0,b>0,圖像經(jīng)過一、二、三象限,y隨x的增大而增大。

  k>0,b<0,圖像經(jīng)過一、三、四象限,y隨x的增大而增大。

  k<0,b>0, 圖像經(jīng)過一、二、四象限,y隨x的增大而減小

  k<0,b<0,圖像經(jīng)過二、三、四象限,y隨x的增大而減小。

  注:當(dāng)b=0時(shí),一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。

  初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)二

  四邊形

  基本概念:

  四邊形,四邊形的內(nèi)角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對(duì)稱,中心對(duì)稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.

  定理:中心對(duì)稱的有關(guān)定理

  1.關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形.

  2.關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,被對(duì)稱中心平分.

  3.如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱.

  公式:

  1.S菱形 =1/2ab=ch.(a、b為菱形的對(duì)角線 ,c為菱形的邊長 ,h為c邊上的高)

  2.S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)

  3.S梯形 =1/2(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)

  常識(shí):

  1.若n是多邊形的邊數(shù),則對(duì)角線條數(shù)公式是:n(n-3)/2

  2.規(guī)則圖形折疊一般“出一對(duì)全等,一對(duì)相似”.

  3.如圖:平行四邊形、矩形、菱形、正方形的從屬關(guān)系.

  4.常見圖形中,

  僅是軸對(duì)稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形…… ;

  僅是中心對(duì)稱圖形的有:平行四邊形 …… ;

  是雙對(duì)稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓 …… .

  注意:線段有兩條對(duì)稱軸.

  初二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)三

  函數(shù)及其相關(guān)概念

  1、變量與常量

  在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

  一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有唯一確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

  2、函數(shù)解析式

  用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

  使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

  3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

  (1)解析法

  兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

  (2)列表法

  把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

  (3)圖像法

  用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

  4、由函數(shù)解析式畫其圖像的一般步驟

  (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

  (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

  (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

猜你喜歡:

1.八年級(jí)下冊(cè)政治知識(shí)點(diǎn)整理歸納

2.初二歷史下冊(cè)知識(shí)點(diǎn)歸納梳理

3.八年級(jí)下冊(cè)歷史每課知識(shí)點(diǎn)歸納

4.初中數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)

5.初中數(shù)學(xué)知識(shí)點(diǎn)全總結(jié)

3800327