2024年高考數(shù)學(xué)各題型答題技巧
高中數(shù)學(xué)是比較難的,想要學(xué)好高中數(shù)學(xué),必須認(rèn)真聽講,認(rèn)真做題,那么關(guān)于高考數(shù)學(xué)各題型答題技巧有哪些呢?以下是小編準(zhǔn)備的一些2024年高考數(shù)學(xué)各題型答題技巧,僅供參考。
高考數(shù)學(xué)??碱}型有哪些
1、函數(shù)與導(dǎo)數(shù)
主要考查數(shù)學(xué)集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
2、平面向量與三角函數(shù)、三角變換及其應(yīng)用
這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些數(shù)學(xué)基礎(chǔ)題或中檔題。
3、數(shù)列及其應(yīng)用
這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
4、不等式
主要考查數(shù)學(xué)不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
5、概率和統(tǒng)計(jì)
這部分和我們的生活聯(lián)系比較大,屬數(shù)學(xué)應(yīng)用題。
6、空間位置關(guān)系的定性與定量分析
主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運(yùn)用程度。
7、解析幾何
高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考數(shù)學(xué)各類大題解題技巧
數(shù)列題
1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單(所以要有構(gòu)造函數(shù)的意識)。
立體幾何題
1、證明線面位置關(guān)系,一般不需要去建系,更簡單;2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,最好要建系;3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號問題、鈍角、銳角問題)。
概率問題
1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個數(shù);2、搞清是什么概率模型,套用哪個公式;3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;4、求概率時,正難則反(根據(jù)p1+p2+...+pn=1);5、注意計(jì)數(shù)時利用列舉、樹圖等基本方法;6、注意放回抽樣,不放回抽樣;7、注意“零散的”的知識點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;8、注意條件概率公式;9、注意平均分組、不完全平均分組問題。
圓錐曲線問題
1、注意求軌跡方程時,從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時),知道弦中點(diǎn)時,往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長公式;注意自變量的取值范圍等等;3、戰(zhàn)術(shù)上整體思路要保7分,爭9分,想12分。
排列組合
1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2.理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
3.理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4.掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
5.了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6.了解等可能性事件的概率的意義,會用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7.了解互斥事件、相互獨(dú)立事件的意義,會用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8.會計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.
高考數(shù)學(xué)萬能答題模板
選擇填空題
1.易錯點(diǎn)歸納
九大模塊易混淆難記憶考點(diǎn)分析,如概率和頻率概念混淆、數(shù)列求和公式記憶錯誤等,強(qiáng)化基礎(chǔ)知識點(diǎn)記憶,避開因?yàn)橹R點(diǎn)失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴(yán)謹(jǐn)如集合題型未考慮空集情況、函數(shù)問題未考慮定義域等主觀性因素造成的失誤進(jìn)行專項(xiàng)訓(xùn)練。
2.答題方法
選擇題十大速解方法:排除法、增加條件法、以小見大法、極限法、關(guān)鍵點(diǎn)法、對稱法、小結(jié)論法、歸納法、感覺法、分析選項(xiàng)法。
填空題四大速解方法:直接法、特殊化法、數(shù)形結(jié)合法、等價轉(zhuǎn)化法。
解答題
專題一、三角變換與三角函數(shù)的性質(zhì)問題
1.解題路線圖
①不同角化同角
②降冪擴(kuò)角
③化f(x)=Asin(ωx+φ)+h
④結(jié)合性質(zhì)求解。
2.構(gòu)建答題模板
①化簡:三角函數(shù)式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數(shù)”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sinx,y=cosx的性質(zhì)確定條件。
③求解:利用ωx+φ的范圍求條件解得函數(shù)y=Asin(ωx+φ)+h的性質(zhì),寫出結(jié)果。
④反思:反思回顧,查看關(guān)鍵點(diǎn),易錯點(diǎn),對結(jié)果進(jìn)行估算,檢查規(guī)范性。
專題二、解三角形問題
1.解題路線圖
①化簡變形;②用余弦定理轉(zhuǎn)化為邊的關(guān)系;③變形證明。
①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2.構(gòu)建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標(biāo)注出來,然后確定轉(zhuǎn)化的方向。
②定工具:即根據(jù)條件和所求,合理選擇轉(zhuǎn)化的工具,實(shí)施邊角之間的互化。
③求結(jié)果。
④再反思:在實(shí)施邊角互化的時候應(yīng)注意轉(zhuǎn)化的方向,一般有兩種思路:一是全部轉(zhuǎn)化為邊之間的關(guān)系;二是全部轉(zhuǎn)化為角之間的關(guān)系,然后進(jìn)行恒等變形。
專題三、數(shù)列的通項(xiàng)、求和問題
1.解題路線圖
①先求某一項(xiàng),或者找到數(shù)列的關(guān)系式。
②求通項(xiàng)公式。
③求數(shù)列和通式。
2.構(gòu)建答題模板
①找遞推:根據(jù)已知條件確定數(shù)列相鄰兩項(xiàng)之間的關(guān)系,即找數(shù)列的遞推公式。
②求通項(xiàng):根據(jù)數(shù)列遞推公式轉(zhuǎn)化為等差或等比數(shù)列求通項(xiàng)公式,或利用累加法或累乘法求通項(xiàng)公式。
③定方法:根據(jù)數(shù)列表達(dá)式的結(jié)構(gòu)特征確定求和方法(如公式法、裂項(xiàng)相消法、錯位相減法、分組法等)。
④寫步驟:規(guī)范寫出求和步驟。
⑤再反思:反思回顧,查看關(guān)鍵點(diǎn)、易錯點(diǎn)及解題規(guī)范。
專題四、利用空間向量求角問題
1.解題路線圖
①建立坐標(biāo)系,并用坐標(biāo)來表示向量。
②空間向量的坐標(biāo)運(yùn)算。
③用向量工具求空間的角和距離。
2.構(gòu)建答題模板
①找垂直:找出(或作出)具有公共交點(diǎn)的三條兩兩垂直的直線。
②寫坐標(biāo):建立空間直角坐標(biāo)系,寫出特征點(diǎn)坐標(biāo)。
③求向量:求直線的方向向量或平面的法向量。
④求夾角:計(jì)算向量的夾角。
⑤得結(jié)論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1.解題路線圖
①設(shè)方程。
②解系數(shù)。
③得結(jié)論。
2.構(gòu)建答題模板
①提關(guān)系:從題設(shè)條件中提取不等關(guān)系式。
②找函數(shù):用一個變量表示目標(biāo)變量,代入不等關(guān)系式。
③得范圍:通過求解含目標(biāo)變量的不等式,得所求參數(shù)的范圍。
④再回顧:注意目標(biāo)變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1.解題路線圖
①一般先假設(shè)這種情況成立(點(diǎn)存在、直線存在、位置關(guān)系存在等)。
②將上面的假設(shè)代入已知條件求解。
③得出結(jié)論。
2.構(gòu)建答題模板
①先假定:假設(shè)結(jié)論成立。
②再推理:以假設(shè)結(jié)論成立為條件,進(jìn)行推理求解。
③下結(jié)論:若推出合理結(jié)果,經(jīng)驗(yàn)證成立則肯。 定假設(shè);若推出矛盾則否定假設(shè)。
④再回顧:查看關(guān)鍵點(diǎn),易錯點(diǎn)(特殊情況、隱含條件等),審視解題規(guī)范性。
專題七、離散型隨機(jī)變量的均值與方差
1.解題路線圖
(1)①標(biāo)記事件;②對事件分解;③計(jì)算概率。
(2)①確定ξ取值;②計(jì)算概率;③得分布列;④求數(shù)學(xué)期望。
2.構(gòu)建答題模板
①定元:根據(jù)已知條件確定離散型隨機(jī)變量的取值。
②定性:明確每個隨機(jī)變量取值所對應(yīng)的事件。
③定型:確定事件的概率模型和計(jì)算公式。
④計(jì)算:計(jì)算隨機(jī)變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據(jù)均值、方差公式求解其值。
專題八、函數(shù)的單調(diào)性、極值、最值問題
1.解題路線圖
(1)①先對函數(shù)求導(dǎo);②計(jì)算出某一點(diǎn)的斜率;③得出切線方程。
(2)①先對函數(shù)求導(dǎo);②談?wù)搶?dǎo)數(shù)的正負(fù)性;③列表觀察原函數(shù)值;④得到原函數(shù)的單調(diào)區(qū)間和極值。
2.構(gòu)建答題模板
①求導(dǎo)數(shù):求f(x)的導(dǎo)數(shù)f′(x)。(注意f(x)的定義域)。
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區(qū)間,并列出表格。
④得結(jié)論:從表格觀察f(x)的單調(diào)性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點(diǎn)及步。