學(xué)習(xí)啦>學(xué)習(xí)方法>各學(xué)科學(xué)習(xí)方法>數(shù)學(xué)學(xué)習(xí)方法>

做數(shù)學(xué)大題的技巧

時(shí)間: 維維0 分享

高考依然到了最后的沖刺階段,考生們依然堅(jiān)持著最為緊張的復(fù)習(xí)。如何在眾多知識(shí)點(diǎn)中把握住關(guān)鍵點(diǎn),并掌握哪些技巧呢?那么接下來(lái)給大家分享一些關(guān)于做數(shù)學(xué)大題的技巧做數(shù)學(xué)大題的技巧,希望對(duì)大家有所幫助。

做數(shù)學(xué)大題的技巧

一、三角函數(shù)題

注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中?,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。

二、數(shù)列題

1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰(shuí)為首項(xiàng),誰(shuí)為公差(公比)的等差(等比)數(shù)列;

2、最后一問(wèn)證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。

三、立體幾何題

1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

2、求異面直線所成的角、線面角、二面角、存在性問(wèn)題、幾何體的高、表面積、體積等問(wèn)題時(shí),最好要建系;

3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問(wèn)題、鈍角、銳角問(wèn)題)。

四、概率問(wèn)題

1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

2、搞清是什么概率模型,套用哪個(gè)公式;

3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

4、求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1);

5、注意計(jì)數(shù)時(shí)利用列舉、樹(shù)圖等基本方法;

6、注意放回抽樣,不放回抽樣;

7、注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透;

8、注意條件概率公式;

9、注意平均分組、不完全平均分組問(wèn)題。

五、圓錐曲線問(wèn)題

1、注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法;

2、注意直線的設(shè)法(法1分有斜率,沒(méi)斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長(zhǎng)公式;注意自變量的取值范圍等等;

3、戰(zhàn)術(shù)上整體思路要保7分,爭(zhēng)9分,想12分。

六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問(wèn)題

1、先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(kāi)(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào));

2、注意最后一問(wèn)有應(yīng)用前面結(jié)論的意識(shí);

3、注意分論討論的思想;

4、不等式問(wèn)題有構(gòu)造函數(shù)的意識(shí);

5、恒成立問(wèn)題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);

6、整體思路上保6分,爭(zhēng)10分,想14分。

數(shù)學(xué)必考5類題型解題技巧

一、排列組合篇

1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

2.理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

3.理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡(jiǎn)單的應(yīng)用問(wèn)題。

4.掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的性質(zhì),并能用它們計(jì)算和證明一些簡(jiǎn)單的問(wèn)題。

5.了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。

6.了解等可能性事件的概率的意義,會(huì)用排列組合的基本公式計(jì)算一些等可能性事件的概率。

7.了解互斥事件、相互獨(dú)立事件的意義,會(huì)用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。

8.會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率.

二、立體幾何篇

高考立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。選擇填空題考核立幾中的計(jì)算型問(wèn)題,而解答題著重考查立幾中的邏輯推理型問(wèn)題,當(dāng)然,二者均應(yīng)以正確的空間想象為前提。隨著新的課程改革的進(jìn)一步實(shí)施,立體幾何考題正朝著“多一點(diǎn)思考,少一點(diǎn)計(jì)算”的發(fā)展。從歷年的考題變化看,以簡(jiǎn)單幾何體為載體的線面位置關(guān)系的論證,角與距離的探求是??汲P碌臒衢T話題。

知識(shí)整合

1.有關(guān)平行與垂直(線線、線面及面面)的問(wèn)題,是在解決立體幾何問(wèn)題的過(guò)程中,大量的、反復(fù)遇到的,而且是以各種各樣的問(wèn)題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問(wèn)題著手,通過(guò)較為基本問(wèn)題,熟悉公理、定理的內(nèi)容和功能,通過(guò)對(duì)問(wèn)題的分析與概括,掌握立體幾何中解決問(wèn)題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。

2.判定兩個(gè)平面平行的方法:

(1)根據(jù)定義--證明兩平面沒(méi)有公共點(diǎn);

(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;

(3)證明兩平面同垂直于一條直線。

3.兩個(gè)平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒(méi)有公共點(diǎn)”。

(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。

(3)兩個(gè)平面平行的性質(zhì)定理:”如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行“。

(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。

(5)夾在兩個(gè)平行平面間的平行線段相等。

(6)經(jīng)過(guò)平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為”性質(zhì)定理“,但在解題過(guò)程中均可直接作為性質(zhì)定理引用。

解答題分步驟解答可多得分

1.合理安排,保持清醒。數(shù)學(xué)考試在下午,建議中午休息半小時(shí)左右,睡不著閉閉眼睛也好,盡量放松。然后帶齊用具,提前半小時(shí)到考場(chǎng)。

2.通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應(yīng)從頭到尾通覽全卷,盡量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易后難,也可防止漏做題。

3.解答題規(guī)范有序。一般來(lái)說(shuō),試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來(lái)源。對(duì)于解答題中的容易題和中檔題,要注意解題的規(guī)范化,關(guān)鍵步驟不能丟,如三種語(yǔ)言(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言)的表達(dá)要規(guī)范,邏輯推理要嚴(yán)謹(jǐn),計(jì)算過(guò)程要完整,注意算理算法,應(yīng)用題建模與還原過(guò)程要清晰,合理安排卷面結(jié)構(gòu)……對(duì)于解答題中的難題,得滿分很困難,可以采用“分段得分”的策略,因?yàn)楦呖?微博)閱卷是“分段評(píng)分”。比如可將難題劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,能解決到什么程度就解決到什么程度,獲取一定的分?jǐn)?shù)。有些題目有好幾問(wèn),前面的小問(wèn)你解答不出,但后面的小問(wèn)如果根據(jù)前面的結(jié)論你能夠解答出來(lái),這時(shí)候不妨引用前面的結(jié)論先解答后面的,這樣跳步解答也可以得分。

三、數(shù)列問(wèn)題篇

數(shù)列是高中數(shù)學(xué)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。高考對(duì)本章的考查比較全面,等差數(shù)列,等比數(shù)列的考查每年都不會(huì)遺漏。有關(guān)數(shù)列的試題經(jīng)常是綜合題,經(jīng)常把數(shù)列知識(shí)和指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和不等式的知識(shí)綜合起來(lái),試題也常把等差數(shù)列、等比數(shù)列,求極限和數(shù)學(xué)歸納法綜合在一起。探索性問(wèn)題是高考的熱點(diǎn),常在數(shù)列解答題中出現(xiàn)。本章中還蘊(yùn)含著豐富的數(shù)學(xué)思想,在主觀題中著重考查函數(shù)與方程、轉(zhuǎn)化與化歸、分類討論等重要思想,以及配方法、換元法、待定系數(shù)法等基本數(shù)學(xué)方法。

近幾年來(lái),高考關(guān)于數(shù)列方面的命題主要有以下三個(gè)方面;(1)數(shù)列本身的有關(guān)知識(shí),其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式及求和公式。(2)數(shù)列與其它知識(shí)的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。(3)數(shù)列的應(yīng)用問(wèn)題,其中主要是以增長(zhǎng)率問(wèn)題為主。試題的難度有三個(gè)層次,小題大都以基礎(chǔ)題為主,解答題大都以基礎(chǔ)題和中檔題為主,只有個(gè)別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題難度較大。

知識(shí)整合

1. 在掌握等差數(shù)列、等比數(shù)列的定義、性質(zhì)、通項(xiàng)公式、前n項(xiàng)和公式的基礎(chǔ)上,系統(tǒng)掌握解等差數(shù)列與等比數(shù)列綜合題的規(guī)律,深化數(shù)學(xué)思想方法在解題實(shí)踐中的指導(dǎo)作用,靈活地運(yùn)用數(shù)列知識(shí)和方法解決數(shù)學(xué)和實(shí)際生活中的有關(guān)問(wèn)題;

2. 在解決綜合題和探索性問(wèn)題實(shí)踐中加深對(duì)基礎(chǔ)知識(shí)、基本技能和基本數(shù)學(xué)思想方法的認(rèn)識(shí),溝通各類知識(shí)的聯(lián)系,形成更完整的知識(shí)網(wǎng)絡(luò),提高分析問(wèn)題和解決問(wèn)題的能力,進(jìn)一步培養(yǎng)學(xué)生閱讀理解和創(chuàng)新能力,綜合運(yùn)用數(shù)學(xué)思想方法分析問(wèn)題與解決問(wèn)題的能力。

3. 培養(yǎng)學(xué)生善于分析題意,富于聯(lián)想,以適應(yīng)新的背景,新的設(shè)問(wèn)方式,提高學(xué)生用函數(shù)的思想、方程的思想研究數(shù)列問(wèn)題的自覺(jué)性、培養(yǎng)學(xué)生主動(dòng)探索的精神和科學(xué)理性的思維方法.

四、導(dǎo)數(shù)應(yīng)用篇

專題綜述

導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問(wèn)題的有力工具。在高中階段對(duì)于導(dǎo)數(shù)的學(xué)習(xí),主要是以下幾個(gè)方面:

1.導(dǎo)數(shù)的常規(guī)問(wèn)題:

(1)刻畫函數(shù)(比初等方法精確細(xì)微);

(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);

(3)應(yīng)用問(wèn)題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡(jiǎn)便)等關(guān)于次多項(xiàng)式的導(dǎo)數(shù)問(wèn)題屬于較難類型。

2.關(guān)于函數(shù)特征,最值問(wèn)題較多,所以有必要專項(xiàng)討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡(jiǎn)便。

3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問(wèn)題是一種重要類型,也是高考(微博)中考察綜合能力的一個(gè)方向,應(yīng)引起注意。

知識(shí)整合

1.導(dǎo)數(shù)概念的理解。

2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實(shí)際問(wèn)題的最大值與最小值。復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點(diǎn)與難點(diǎn)內(nèi)容。課本中先通過(guò)實(shí)例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來(lái)對(duì)法則進(jìn)行了證明。

3.要能正確求導(dǎo),必須做到以下兩點(diǎn):

(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。

(2)對(duì)于一個(gè)復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對(duì)哪個(gè)變量求導(dǎo)。

五、解析幾何(圓錐曲線)

高考解析幾何剖析:

1、很多高考問(wèn)題都是以平面上的點(diǎn)、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎(chǔ)構(gòu)成的圖形的問(wèn)題;

2、演繹規(guī)則就是代數(shù)的演繹規(guī)則,或者說(shuō)就是列方程、解方程的規(guī)則。

有了以上兩點(diǎn)認(rèn)識(shí),我們可以毫不猶豫地下這么一個(gè)結(jié)論,那就是解決高考解析幾何問(wèn)題無(wú)外乎做兩項(xiàng)工作:

(1)幾何問(wèn)題代數(shù)化。

(2)用代數(shù)規(guī)則對(duì)代數(shù)化后的問(wèn)題進(jìn)行處理。

高考數(shù)學(xué)大題答題思路

1、函數(shù)與方程思想

函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過(guò)建立函數(shù)關(guān)系運(yùn)用函數(shù)的圖像和性質(zhì)去分析問(wèn)題、轉(zhuǎn)化問(wèn)題和解決問(wèn)題;方程思想,是從問(wèn)題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問(wèn)題轉(zhuǎn)化為方程或不等式模型去解決問(wèn)題。同學(xué)們?cè)诮忸}時(shí)可利用轉(zhuǎn)化思想進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。  

2、 數(shù)形結(jié)合思想

中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問(wèn)題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此建議同學(xué)們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問(wèn)題。   

3、特殊與一般的思想

用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋€(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),同學(xué)們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用

4、極限思想解題步驟

極限思想解決問(wèn)題的一般步驟為:一、對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;二、確認(rèn)這變量通過(guò)無(wú)限過(guò)程的結(jié)果就是所求的未知量;三、構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果

5、分類討論思想

同學(xué)們?cè)诮忸}時(shí)常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。建議同學(xué)們?cè)诜诸愑懻摻忸}時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。

做數(shù)學(xué)大題的技巧相關(guān)文章

做數(shù)學(xué)選擇題的十種技巧

做數(shù)學(xué)應(yīng)用題的技巧

做數(shù)學(xué)蒙題的技巧

做數(shù)學(xué)壓軸題的技巧初中

高考數(shù)學(xué)大題答題技巧方法

高考數(shù)學(xué)大題的解題技巧

做數(shù)學(xué)題有何技巧方法

做數(shù)學(xué)壓軸題的技巧高中

高考數(shù)學(xué)大題得分技巧

做數(shù)學(xué)大題的技巧

高考依然到了最后的沖刺階段,考生們依然堅(jiān)持著最為緊張的復(fù)習(xí)。如何在眾多知識(shí)點(diǎn)中把握住關(guān)鍵點(diǎn),并掌握哪些技巧呢?那么接下來(lái)給大家分享一些關(guān)于做數(shù)學(xué)大題的技巧做數(shù)學(xué)大題的技巧,希望對(duì)大家有所幫助。做數(shù)學(xué)大
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 考研數(shù)學(xué)大題拿高分的技巧
    考研數(shù)學(xué)大題拿高分的技巧

    考研數(shù)學(xué)大題占了很大的分值,所以往往水平差不多的學(xué)生在分?jǐn)?shù)上會(huì)有不小的差距。如何才能在大題上拿到高分與別人拉開(kāi)距離從而獲得優(yōu)勢(shì)呢?那么接下

  • 高考數(shù)學(xué)大題的解題技巧
    高考數(shù)學(xué)大題的解題技巧

    大題是高考數(shù)學(xué)科目的重要組成部分,也是比分占得很重的一部分,考生需要掌握解題技巧,才能正確答題,那么接下來(lái)給大家分享一些關(guān)于高考數(shù)學(xué)大題

  • 高考數(shù)學(xué)答題技巧選擇題
    高考數(shù)學(xué)答題技巧選擇題

    高考數(shù)學(xué)考試的時(shí)候可以用一些答題技巧,來(lái)提高自己的正確率和答題速度。那么接下來(lái)給大家分享一些關(guān)于高考數(shù)學(xué)答題技巧選擇題,希望對(duì)大家有所幫

  • 初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
    初一數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)

    數(shù)學(xué)是一們基礎(chǔ)學(xué)科,我們從小就開(kāi)始接觸到它?,F(xiàn)在我們已經(jīng)步入初中,由于初中數(shù)學(xué)對(duì)知識(shí)的難度、深度、廣度要求更高,有一部分同學(xué)由于不適應(yīng)這

845686