學習啦>學習方法>各學科學習方法>數(shù)學學習方法>

有關高中必修五數(shù)學知識點

時間: 舒淇4599 分享

在現(xiàn)實學習生活中,大家都沒少背知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面小編為大家?guī)碛嘘P高中必修五數(shù)學知識點,希望大家喜歡!

高中必修五數(shù)學知識點

(一)解三角形:

1、正弦定理:在中,、、分別為角、、的對邊,,則有

(為的外接圓的半徑)

2、正弦定理的變形公式:①,,;

②,,;③;

3、三角形面積公式:.

4、余弦定理:在中,有,推論:

(二)數(shù)列:

1.數(shù)列的有關概念:

(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。

(2)通項公式:數(shù)列的第n項an與n之間的函數(shù)關系用一個公式來表示,這個公式即是該數(shù)列的通項公式。如:。

(3)遞推公式:已知數(shù)列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。

如:。

2.數(shù)列的表示方法

(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。

(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。

3.數(shù)列的分類:

4.數(shù)列{an}及前n項和之間的關系:

高中必修五數(shù)學知識點梳理

數(shù)列

1、數(shù)列的定義及數(shù)列的通項公式:

① an?f(n),數(shù)列是定義域為N

的函數(shù)f(n),當n依次取1,2,???時的一列函數(shù)值② i。歸納法

若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數(shù)列?an?m?

?Sn?f(an)

iv。若Sn?f(an),先求a

1?得到關于an?1和an的遞推關系式

S?f(a)n?1?n?1?Sn?2an?1

例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

?Sn?1?2an?1?1

2、等差數(shù)列:

①定義:a

n?1?an=d(常數(shù)),證明數(shù)列是等差數(shù)列的重要工具。 ②通項d?0時,an為關于n的一次函數(shù);

d>0時,an為單調遞增數(shù)列;d<0時,a

n為單調遞減數(shù)列。

n(n?1)2

③前n?na1?

d,

d?0時,Sn是關于n的不含常數(shù)項的一元二次函數(shù),反之也成立。

④性質:ii。若?an?為等差數(shù)列,則am,am?k,am?2k,…仍為等差數(shù)列。 iii。若?an?為等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數(shù)列。 iv若A為a,b的等差中項,則有A?3。等比數(shù)列:

①定義:

an?1an

?q(常數(shù)),是證明數(shù)列是等比數(shù)列的重要工具。

a?b2

②通項時為常數(shù)列)。

③。前n項和

需特別注意,公比為字母時要討論。

高中必修五數(shù)學知識點整理

(1)定義:

對于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點。

(2)函數(shù)的零點與相應方程的根、函數(shù)的圖象與x軸交點間的關系:

方程f(x)=0有實數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點?函數(shù)y=f(x)有零點。

(3)函數(shù)零點的判定(零點存在性定理):

如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

二二次函數(shù)y=ax2+bx+c(a>0)的圖象與零點的關系

三二分法

對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)<0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

1、函數(shù)的零點不是點:

函數(shù)y=f(x)的零點就是方程f(x)=0的實數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點的橫坐標,所以函數(shù)的零點是一個數(shù),而不是一個點.在寫函數(shù)零點時,所寫的一定是一個數(shù)字,而不是一個坐標。

2、對函數(shù)零點存在的判斷中,必須強調:

(1)、f(x)在[a,b]上連續(xù);

(2)、f(a)·f(b)<0;

(3)、在(a,b)內存在零點。

這是零點存在的一個充分條件,但不必要。

3、對于定義域內連續(xù)不斷的函數(shù),其相鄰兩個零點之間的所有函數(shù)值保持同號。

利用函數(shù)零點的存在性定理判斷零點所在的區(qū)間時,首先看函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是否連續(xù)不斷,再看是否有f(a)·f(b)<0.若有,則函數(shù)y=f(x)在區(qū)間(a,b)內必有零點。

判斷函數(shù)零點個數(shù)的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

2、零點存在性定理法:

利用定理不僅要判斷函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結合函數(shù)的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函數(shù)有多少個零點。

3、數(shù)形結合法:

轉化為兩個函數(shù)的圖象的交點個數(shù)問題.先畫出兩個函數(shù)的圖象,看其交點的個數(shù),其中交點的個數(shù),就是函數(shù)零點的個數(shù)。

已知函數(shù)有零點(方程有根)求參數(shù)取值常用的方法

1、直接法:

直接根據(jù)題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。

2、分離參數(shù)法:

先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決。

3、數(shù)形結合法:

先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解。

有關高中必修五數(shù)學知識點相關文章

高二數(shù)學必修五第三課的知識點歸納

高中數(shù)學必修五不等式提綱

高一數(shù)學數(shù)列知識點

高一數(shù)學必修5不等式知識點總結

高中數(shù)學必修五不等式的性質知識點

高三數(shù)學必修書的必拿下知識點解析

高二數(shù)學會考知識點大全

高考數(shù)學必考重點知識大全

高一數(shù)學等比數(shù)列的前n項和知識點分析

有關高中必修五數(shù)學知識點

在現(xiàn)實學習生活中,大家都沒少背知識點吧?知識點是傳遞信息的基本單位,知識點對提高學習導航具有重要的作用。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面小編為大家?guī)碛嘘P高中必修五數(shù)學知識點,希望大家喜歡!高中必
推薦度:
點擊下載文檔文檔為doc格式
1544420