學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數(shù)學 >

高一數(shù)學補習的知識點概括

時間: 贊銳20 分享

我們在學校時,在課堂上,提高聽課的效率是關(guān)鍵。學習期間,在課堂中的時間很重要。因此聽課的效率如何,決定著學習的基本狀況,以下是小編給大家整理的高一數(shù)學補習的知識點概括,希望能助你一臂之力!

高一數(shù)學補習的知識點概括1

一、定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時稱y是x的一次函數(shù)。

特別地,當b=0時,y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

2.當x=0時,b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b.(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

3.k,b與函數(shù)圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限

四、確定一次函數(shù)的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b.

(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b.所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達式。

五、一次函數(shù)在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt.

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S.g=S-ft.

六、常用公式:(不全,希望有人補充)

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

高一數(shù)學補習的知識點概括2

內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

復合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。

指數(shù)與對數(shù)函數(shù),初中學習方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);

正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

自變量x的取值范圍是不等于0的一切實數(shù)。

反比例函數(shù)圖像性質(zhì):

反比例函數(shù)的圖像為雙曲線。

由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。

如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

當K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

當K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為k。

2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

高一數(shù)學補習的知識點概括3

1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線

K=-A/B,b=-C/B

A1/A2=B1/B2≠C1/C2←→兩直線平行

A1/A2=B1/B2=C1/C2←→兩直線重合

橫截距a=-C/A

縱截距b=-C/B

2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

表示斜率為k,且過(x0,y0)的直線

3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線

表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

4:斜截式:y=kx+b適用于不垂直于x軸的直線

表示斜率為k且y軸截距為b的直線

5:兩點式:適用于不垂直于x軸、y軸的直線

表示過(x1,y1)和(x2,y2)的直線

(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

6:交點式:f1(x,y)_m+f2(x,y)=0適用于任何直線

表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線

7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線

表示過點(x0,y0)且與直線f(x,y)=0平行的直線

8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標軸的直線

過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

表示過點(x0,y0)且方向向量為(u,v)的直線

10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

表示過點(x0,y0)且與向量(a,b)垂直的直線

11:點到直線距離

點P(x0,y0)到直線Ι:Ax+By+C=0的距離

d=|Ax0+By0+C|/√A2+B2

兩平行線之間距離

若兩平行直線的方程分別為:

Ax+By+C1=OAx+By+C2=0則

這兩條平行直線間的距離d為:

d=丨C1-C2丨/√(A2+B2)

12:各種不同形式的直線方程的局限性:

(1)點斜式和斜截式都不能表示斜率不存在的直線;

(2)兩點式不能表示與坐標軸平行的直線;

(3)截距式不能表示與坐標軸平行或過原點的直線;

(4)直線方程的一般式中系數(shù)A、B不能同時為零.

13:位置關(guān)系

若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0

1.當A1B2-A2B1≠0時,相交

2.A1/A2=B1/B2≠C1/C2,平行

3.A1/A2=B1/B2=C1/C2,重合

4.A1A2+B1B2=0,垂直


高一數(shù)學補習的知識點概括相關(guān)文章:

高一數(shù)學知識點總結(jié)(考前必看)

高一數(shù)學知識點小歸納

高一數(shù)學知識點總結(jié)

高一數(shù)學知識點總結(jié)

高一數(shù)學知識點總結(jié)(人教版)

高一數(shù)學知識點總結(jié)期末必備

高一數(shù)學知識點全面總結(jié)

高一數(shù)學知識點總結(jié)歸納

高一數(shù)學知識點匯總大全

高一數(shù)學知識點新總結(jié)

1070752