學習啦>學習方法>高中學習方法>高一學習方法>高一數(shù)學>

高一數(shù)學必考知識點

時間: 贊銳0 分享

進入高中,你得知道高一數(shù)學的重要,他是高中的基礎。也是高考的基礎,掌握數(shù)學知識點將對高考復習起到重要作用,更好的讓我們迎接高考的挑戰(zhàn)。以下是小編給大家整理的高一數(shù)學知識點,希望能幫助到大家!

高一數(shù)學必考知識點1

直線與方程

(1)直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高一數(shù)學必考知識點2

一次函數(shù)

一、定義與定義式:

自變量x和因變量y有如下關系:

y=kx+b

則此時稱y是x的一次函數(shù)。

特別地,當b=0時,y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

2.當x=0時,b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

3.k,b與函數(shù)圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限

四、確定一次函數(shù)的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。

(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最后得到一次函數(shù)的表達式。

五、一次函數(shù)在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。

六、常用公式:

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)

直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

②過兩點的直線的斜率公式:

注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高一數(shù)學必考知識點3

指數(shù)函數(shù)

(1)指數(shù)函數(shù)的定義域為所有實數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域為大于0的實數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個顯然的規(guī)律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數(shù)總是在某一個方向上無限趨向于X軸,永不相交。

(7)函數(shù)總是通過(0,1)這點。

(8)顯然指數(shù)函數(shù)無界。

奇偶性

定義

一般地,對于函數(shù)f(x)

(1)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

(2)如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

(3)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

(4)如果對于函數(shù)定義域內(nèi)的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

高一數(shù)學必考知識點相關文章

高一數(shù)學期末必考的知識點歸納

高一數(shù)學知識點總結(jié)(考前必看)

高一數(shù)學??贾R點總結(jié)

高一數(shù)學期末必考的知識點歸納

高一數(shù)學知識點匯總大全

高一數(shù)學重點知識點公式總結(jié)

高一數(shù)學知識點總結(jié)期末必備

高一數(shù)學必背公式及知識匯總

高一數(shù)學知識點全面總結(jié)

高一數(shù)學必修一知識點匯總

高一數(shù)學必考知識點

進入高中,你得知道高一數(shù)學的重要,他是高中的基礎。也是高考的基礎,掌握數(shù)學知識點將對高考復習起到重要作用,更好的讓我們迎接高考的挑戰(zhàn)。以下是小編給大家整理的高一數(shù)學知識點,希望能幫助到大家!高一數(shù)學必
推薦度:
點擊下載文檔文檔為doc格式
1069529