學習啦 > 學習方法 > 高中學習方法 > 高一學習方法 > 高一數學 >

高一數學函數知識點

時間: 贊銳20 分享

考試是檢測學生學習效果的重要手段和方法,考前需要做好各方面的知識儲備,對于數學更加要進行復習歸納。下面就讓小編給大家分享一些高一數學必修一函數知識點總結吧,希望能對你有幫助!

高一數學函數知識點1

1. 函數的奇偶性

(1)若f(x)是偶函數,那么f(x)=f(-x) ;

(2)若f(x)是奇函數,0在其定義域內,則 f(0)=0(可用于求參數);

(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數在對稱的單調區(qū)間內有相同的單調性;偶函數在對稱的單調區(qū)間內有相反的單調性;

2. 復合函數的有關問題

(1)復合函數定義域求法:若已知 的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數的問題一定要注意定義域優(yōu)先的原則。

(2)復合函數的單調性由“同增異減”判定;

3.函數圖像(或方程曲線的對稱性)

(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;

高一數學函數知識點2

(6)函數y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;

4.函數的周期性

(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,則y=f(x)是周期為2a的周期函數;

(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;

(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;

(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數;

(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2 的周期函數;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數;

5.方程k=f(x)有解 k∈D(D為f(x)的值域);

6.a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N= ( a>0,a≠1,b>0,b≠1);

(3) l og a b的符號由口訣“同正異負”記憶; (4) a log a N= N ( a>0,a≠1,N>0 );

8. 判斷對應是否為映射時,抓住兩點:(1)A中元素必須都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9. 能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。

10.對于反函數,應掌握以下一些結論:(1)定義域上的單調函數必有反函數;(2)奇函數的反函數也是奇函數;(3)定義域為非單元素集的偶函數不存在反函數;(4)周期函數不存在反函數;(5)互為反函數的兩個函數具有相同的單調性;(5) y=f(x)與y=f-1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

11.處理二次函數的問題勿忘數形結合;二次函數在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;

12. 依據單調性,利用一次函數在區(qū)間上的保號性可解決求一類參數的范圍問題

13. 恒成立問題的處理方法:(1)分離參數法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;

高一數學函數知識點3

一、一次函數定義與定義式:

自變量x和因變量y有如下關系:

y=kx+b

則此時稱y是x的一次函數。

特別地,當b=0時,y是x的正比例函數。

即:y=kx(k為常數,k≠0)

二、一次函數的性質:

1.y的變化值與對應的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實數b取任何實數)

2.當x=0時,b為函數在y軸上的截距。

三、一次函數的圖像及性質:

1.作法與圖形:通過如下3個步驟

(1)列表;

(2)描點;

(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)

2.性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。

3.k,b與函數圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

四、確定一次函數的表達式:

已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。

(1)設一次函數的表達式(也叫解析式)為y=kx+b。

(2)因為在一次函數上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個二元一次方程,得到k,b的值。

(4)最后得到一次函數的表達式。

五、一次函數在生活中的應用:

1.當時間t一定,距離s是速度v的一次函數。s=vt。

2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數。設水池中原有水量S。g=S-ft。

六、常用公式:

1.求函數圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點:|x1-x2|/2

3.求與y軸平行線段的中點:|y1-y2|/2

4.求任意線段的長:√(x1-x2)’2+(y1-y2)’2(注:根號下(x1-x2)與(y1-y2)的平方和)

二次函數

I.定義與定義表達式

一般地,自變量x和因變量y之間存在如下關系:

y=ax’2+bx+c

(a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

則稱y為x的二次函數。

二次函數表達式的右邊通常為二次三項式。

II.二次函數的三種表達式

一般式:y=ax’2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)’2+k[拋物線的頂點P(h,k)]

交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

注:在3種形式的互相轉化中,有如下關系:

h=-b/2ak=(4ac-b’2)/4ax?,x?=(-b±√b’2-4ac)/2a

III.二次函數的圖像

在平面直角坐標系中作出二次函數y=x’2的圖像,

可以看出,二次函數的圖像是一條拋物線。

IV.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點P,坐標為

P(-b/2a,(4ac-b’2)/4a)

當-b/2a=0時,P在y軸上;當Δ=b’2-4ac=0時,P在x軸上。

3.二次項系數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點個數

Δ=b’2-4ac>0時,拋物線與x軸有2個交點。

Δ=b’2-4ac=0時,拋物線與x軸有1個交點。

Δ=b’2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b’2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

V.二次函數與一元二次方程

特別地,二次函數(以下稱函數)y=ax’2+bx+c,

當y=0時,二次函數為關于x的一元二次方程(以下稱方程),

即ax’2+bx+c=0

此時,函數圖像與x軸有無交點即方程有無實數根。

函數與x軸交點的橫坐標即為方程的根。

高一數學函數知識點相關文章:

高一數學函數知識點歸納

高一數學函數知識點總結

高一函數知識點總結歸納

高一數學必修1函數的知識點歸納

高中數學函數知識點

高一數學必修一函數知識點總結歸納

高一函數知識點總結必看

高一數學必修1對數函數知識點總結

高一數學一次函數知識點總結

1063239