學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析

時(shí)間: 燕純0 分享

  在學(xué)習(xí)新知識的同時(shí)還要復(fù)習(xí)以前的舊知識,肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。接下來是小編為大家整理的高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析,希望大家喜歡!

  高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析一

  簡單隨機(jī)抽樣

  1.總體和樣本

  在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.

  把每個(gè)研究對象叫做個(gè)體.

  把總體中個(gè)體的總數(shù)叫做總體容量.

  為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:

  研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.

  2.簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨

  機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  3.簡單隨機(jī)抽樣常用的方法:

  抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。

  在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

  4.抽簽法:

  (1)給調(diào)查對象群體中的每一個(gè)對象編號;

  (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽

  (3)對樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查

  例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。

  5.隨機(jī)數(shù)表法:

  例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。

  系統(tǒng)抽樣

  1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):

  把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡單隨機(jī)抽樣的辦法抽取。

  K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

  前提條件:總體中個(gè)體的排列對于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布??梢栽谡{(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

  2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘Τ闃涌虻囊筝^低,實(shí)施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。

  分層抽樣

  1.分層抽樣(類型抽樣):

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟危缓笤僭诟鱾€(gè)類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

  兩種方法:

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn):

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  3.分層的比例問題:

  (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

  用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征

  1、本均值:

  2、樣本標(biāo)準(zhǔn)差:

  3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。

  雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。

  4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變

  (2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍

  (3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

  “去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理

  兩個(gè)變量的線性相關(guān)

  1、概念:

  (1)回歸直線方程(2)回歸系數(shù)

  2.最小二乘法

  3.直線回歸方程的應(yīng)用

  (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系

  (2)利用回歸方程進(jìn)行預(yù)測;把預(yù)報(bào)因子(即自變量x)代入回歸方程對預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。

  (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過控制x的范圍來實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。

  4.應(yīng)用直線回歸的注意事項(xiàng)

  (1)做回歸分析要有實(shí)際意義;

  (2)回歸分析前,先作出散點(diǎn)圖;

  (3)回歸直線不要外延。

  高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析二

  直線的傾斜角:

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  直線的斜率:

 ?、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

 ?、谶^兩點(diǎn)的直線的斜率公式。

  注意:

  (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  直線方程:

  1.點(diǎn)斜式:y-y0=k(x-x0)

  (x0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。

  2.斜截式:y=kx+b

  直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

  3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)

  如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。

  如果x1=x2,y1y2,那么此直線就是垂直于X軸的一條直線,其方程為x=x1,不能表示成上面的一般式。

  如果x1x2,但y1=y2,那么此直線就是垂直于Y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

  4.截距式x/a+y/b=1

  對x的截距就是y=0時(shí),x的值,對y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。

  5.一般式;Ax+By+C=0

  將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=‘b’(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

  高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析三

  拋物線的性質(zhì):

  1.拋物線是軸對稱圖形。對稱軸為直線

  x=-b/2a。

  對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  焦半徑:

  焦半徑:拋物線y2=2px(p>0)上一點(diǎn)P(x0,y0)到焦點(diǎn)Fè???÷?

  p2,0的距離|PF|=x0+p2.

  求拋物線方程的方法:

  (1)定義法:根據(jù)條件確定動(dòng)點(diǎn)滿足的幾何特征,從而確定p的值,得到拋物線的標(biāo)準(zhǔn)方程.

  (2)待定系數(shù)法:根據(jù)條件設(shè)出標(biāo)準(zhǔn)方程,再確定參數(shù)p的值,這里要注意拋物線標(biāo)準(zhǔn)方程有四種形式.從簡單化角度出發(fā),焦點(diǎn)在x軸的,設(shè)為y2=ax(a≠0),焦點(diǎn)在y軸的,設(shè)為x2=by(b≠0).

  高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析四

  1.總體和樣本

  在統(tǒng)計(jì)學(xué)中,把研究對象的全體叫做總體.

  把每個(gè)研究對象叫做個(gè)體.

  把總體中個(gè)體的總數(shù)叫做總體容量.

  為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:

  研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.

  2.簡單隨機(jī)抽樣,也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨

  機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

  3.簡單隨機(jī)抽樣常用的方法:

  抽簽法;隨機(jī)數(shù)表法;計(jì)算機(jī)模擬法;使用統(tǒng)計(jì)軟件直接抽取。

  在簡單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。

  4.抽簽法:

  (1)給調(diào)查對象群體中的每一個(gè)對象編號;

  (2)準(zhǔn)備抽簽的工具,實(shí)施抽簽

  (3)對樣本中的每一個(gè)個(gè)體進(jìn)行測量或調(diào)查

  例:請調(diào)查你所在的學(xué)校的學(xué)生做喜歡的體育活動(dòng)情況。

  5.隨機(jī)數(shù)表法:

  例:利用隨機(jī)數(shù)表在所在的班級中抽取10位同學(xué)參加某項(xiàng)活動(dòng)。

  系統(tǒng)抽樣

  1.系統(tǒng)抽樣(等距抽樣或機(jī)械抽樣):

  把總體的單位進(jìn)行排序,再計(jì)算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個(gè)樣本采用簡單隨機(jī)抽樣的辦法抽取。

  K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)

  前提條件:總體中個(gè)體的排列對于研究的變量來說,應(yīng)是隨機(jī)的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點(diǎn)。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。

  2.系統(tǒng)抽樣,即等距抽樣是實(shí)際中最為常用的抽樣方法之一。因?yàn)樗鼘Τ闃涌虻囊筝^低,實(shí)施也比較簡單。更為重要的是,如果有某種與調(diào)查指標(biāo)相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊(duì)的話,使用系統(tǒng)抽樣可以大大提高估計(jì)精度。

  分層抽樣

  1.分層抽樣(類型抽樣):

  先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個(gè)類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。

  兩種方法:

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標(biāo)準(zhǔn):

  (1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。

  (2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。

  (3)以那些有明顯分層區(qū)分的變量作為分層變量。

  3.分層的比例問題:

  (1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì)非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。

  用樣本的數(shù)字特征估計(jì)總體的數(shù)字特征

  1、本均值:

  2、樣本標(biāo)準(zhǔn)差:

  3.用樣本估計(jì)總體時(shí),如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會(huì)有偏差。在隨機(jī)抽樣中,這種偏差是不可避免的。

  雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個(gè)估計(jì),但這種估計(jì)是合理的,特別是當(dāng)樣本量很大時(shí),它們確實(shí)反映了總體的信息。

  4.(1)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)共同的常數(shù),標(biāo)準(zhǔn)差不變

  (2)如果把一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)乘以一個(gè)共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍

  (3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;

  “去掉一個(gè)分,去掉一個(gè)最低分”中的科學(xué)道理

  兩個(gè)變量的線性相關(guān)

  1、概念:

  (1)回歸直線方程(2)回歸系數(shù)

  2.最小二乘法

  3.直線回歸方程的應(yīng)用

  (1)描述兩變量之間的依存關(guān)系;利用直線回歸方程即可定量描述兩個(gè)變量間依存的數(shù)量關(guān)系

  (2)利用回歸方程進(jìn)行預(yù)測;把預(yù)報(bào)因子(即自變量x)代入回歸方程對預(yù)報(bào)量(即因變量Y)進(jìn)行估計(jì),即可得到個(gè)體Y值的容許區(qū)間。

  (3)利用回歸方程進(jìn)行統(tǒng)計(jì)控制規(guī)定Y值的變化,通過控制x的范圍來實(shí)現(xiàn)統(tǒng)計(jì)控制的目標(biāo)。如已經(jīng)得到了空氣中NO2的濃度和汽車流量間的回歸方程,即可通過控制汽車流量來控制空氣中NO2的濃度。

  4.應(yīng)用直線回歸的注意事項(xiàng)

  (1)做回歸分析要有實(shí)際意義;

  (2)回歸分析前,先作出散點(diǎn)圖;

  (3)回歸直線不要外延。

高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析相關(guān)文章

1.高考文科數(shù)學(xué)重要考點(diǎn)大全

2.高三數(shù)學(xué)知識點(diǎn)梳理

3.高三數(shù)學(xué)知識點(diǎn)考點(diǎn)總結(jié)大全

4.高考文科數(shù)學(xué)知識點(diǎn)總結(jié)

5.2017高三文科數(shù)學(xué)二輪復(fù)習(xí)計(jì)劃

6.2020高考文科數(shù)學(xué)知識點(diǎn)

7.高考文科數(shù)學(xué)內(nèi)容及解題方法與考場小技巧

8.高三文綜知識點(diǎn)考點(diǎn)總結(jié)

9.2020高考數(shù)學(xué)必考知識點(diǎn)總結(jié)

10.2020高考數(shù)學(xué)必考知識點(diǎn)

高三文科數(shù)學(xué)知識點(diǎn)考點(diǎn)解析

在學(xué)習(xí)新知識的同時(shí)還要復(fù)習(xí)以前的舊知識,肯定會(huì)累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會(huì)有事半功倍的學(xué)習(xí)。接下來是小編為大家整理的高三文科數(shù)學(xué)知?