學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高三學(xué)習(xí)方法>高三數(shù)學(xué)>

人教版高三數(shù)學(xué)知識點

時間: 躍瀚1373 分享

學(xué)習(xí)從來無捷徑,循序漸進登高峰。如果說學(xué)習(xí)一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學(xué)習(xí)需要勤奮,做任何事情都需要勤奮。下面是小編給大家整理的一些高三數(shù)學(xué)的知識點,希望對大家有所幫助。

高三數(shù)學(xué)重要知識點整理

考點一:集合與簡易邏輯

集合部分一般以選擇題出現(xiàn),屬容易題。重點考查集合間關(guān)系的理解和認識。近年的試題加強了對集合計算化簡能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時,要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡。簡易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛?、全稱命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達數(shù)學(xué)解題過程和邏輯推理。

考點二:函數(shù)與導(dǎo)數(shù)

函數(shù)是高考的重點內(nèi)容,以選擇題和填空題的為載體針對性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個數(shù)問題、不等式的證明等問題。

考點三:三角函數(shù)與平面向量

一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運算等,另一道對三角知識點的補充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點”題型.

考點四:數(shù)列與不等式

不等式主要考查一元二次不等式的解法、一元二次不等式組和簡單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會在小題中設(shè)置1到2道題。對不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進行考查.在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識為工具,綜合運用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目.

高三數(shù)學(xué)必修三復(fù)習(xí)知識點

1.定義:

用符號〉,=,〈號連接的式子叫不等式。

2.性質(zhì):

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。

③不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的次數(shù)是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

4.考點:

①解一元一次不等式(組)

②根據(jù)具體問題中的數(shù)量關(guān)系列不等式(組)并解決簡單實際問題

③用數(shù)軸表示一元一次不等式(組)的解集

高三下冊數(shù)學(xué)知識點歸納

(一)導(dǎo)數(shù)第一定義

設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義

(二)導(dǎo)數(shù)第二定義

設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義

(三)導(dǎo)函數(shù)與導(dǎo)數(shù)

如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

(四)單調(diào)性及其應(yīng)用

1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

(1)求f¢(x)

(2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

人教版高三數(shù)學(xué)知識點相關(guān)文章

人教版高三數(shù)學(xué)知識點總結(jié)

人教版高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)

人教版高三數(shù)學(xué)的必學(xué)知識點

高中數(shù)學(xué)全部知識點提綱整理

高三數(shù)學(xué)上冊知識點

高中數(shù)學(xué)知識點全總結(jié)

人教版高中數(shù)學(xué)知識點提綱

人教版高三數(shù)學(xué)復(fù)習(xí)知識點

人教版高三數(shù)學(xué)上冊知識點

人教版高中數(shù)學(xué)知識點

人教版高三數(shù)學(xué)知識點

學(xué)習(xí)從來無捷徑,循序漸進登高峰。如果說學(xué)習(xí)一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學(xué)習(xí)需要勤奮,做任何事情都需要勤奮。下面是小編給大家整理的一些高三數(shù)學(xué)的知識點,希望對大家有所幫助。高三數(shù)學(xué)重
推薦度:
點擊下載文檔文檔為doc格式

精選文章

  • 高三期末數(shù)學(xué)考試知識點
    高三期末數(shù)學(xué)考試知識點

    對世界上的一切學(xué)問與知識的掌握也并非難事,只要持之以恒地學(xué)習(xí),努力掌握規(guī)律,達到熟悉的境地,就能融會貫通,運用自如。學(xué)習(xí)需要持之以恒。下

  • 高三數(shù)學(xué)知識點整理人教版
    高三數(shù)學(xué)知識點整理人教版

    學(xué)習(xí)從來無捷徑,循序漸進登高峰。如果說學(xué)習(xí)一定有捷徑,那只能是勤奮,因為努力永遠不會騙人。學(xué)習(xí)需要勤奮,做任何事情都需要勤奮。下面是小編

  • 高三數(shù)學(xué)高考知識點
    高三數(shù)學(xué)高考知識點

    課堂臨時報佛腳,不如課前預(yù)習(xí)好。其實任何學(xué)科的知識都是一樣的,學(xué)習(xí)任何一門學(xué)科,勤奮都是最好的學(xué)習(xí)方法,沒有之一,書山有路勤為徑。下面是

  • 高三數(shù)學(xué)知識點下冊2022
    高三數(shù)學(xué)知識點下冊2022

    失敗乃成功之母,重復(fù)是學(xué)習(xí)之母。學(xué)習(xí),需要不斷的重復(fù)重復(fù),重復(fù)學(xué)過的知識,加深印象,其實任何科目的學(xué)習(xí)方法都是不斷重復(fù)學(xué)習(xí)。下面是小編給

1210156