2022全國甲卷高考理科數學試題及答案解析
2022全國甲卷高考理科數學試題及答案解析
高考結束之后,各位考生和家長最想知道的就是考生考的怎么樣,有很多考生在考完很著急想要知道試題答案從而進行自我估分,下面是小編分享的2022全國甲卷高考理科數學試題及答案,歡迎大家閱讀。
2022全國甲卷高考理科數學試題及答案
截止目前,2022年全國甲卷高考理科數學試卷還未出爐,待高考結束后,小編會第一時間更新2022年全國甲卷高考理科數學試卷,供大家對照、估分、模擬使用。
高考數學答題技巧
1、解決絕對值問題
主要包括化簡、求值、方程、不等式、函數等題,基本思路是:把含絕對值的問題轉化為不含絕對值的問題。
具體轉化方法有:
①分類討論法:根據絕對值符號中的數或式子的正、零、負分情況去掉絕對值。
②零點分段討論法:適用于含一個字母的多個絕對值的情況。
③兩邊平方法:適用于兩邊非負的方程或不等式。
④幾何意義法:適用于有明顯幾何意義的情況。
2、因式分解
根據項數選擇方法和按照一般步驟是順利進行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式
選擇用公式
十字相乘法
分組分解法
拆項添項法
3、配方法
利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數學中的重要方法和技巧。配方法的主要根據有:
4、換元法
解某些復雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:
設元→換元→解元→還元
5、待定系數法
待定系數法是在已知對象形式的條件下求對象的一種方法。適用于求點的坐標、函數解析式、曲線方程等重要問題的解決。其解題步驟是:①設②列③解④寫
6、復雜代數等式
復雜代數等式型條件的使用技巧:左邊化零,右邊變形。
①因式分解型:
(-----)(----)=0兩種情況為或型
②配成平方型:
(----)2+(----)2=0兩種情況為且型
7、數學中兩個最偉大的解題思路
(1)求值的思路列欲求值字母的方程或方程組
(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
8、化簡二次根式
基本思路是:把√m化成完全平方式。即:
9、觀察法
10、代數式求值
方法有:
(1)直接代入法
(2)化簡代入法
(3)適當變形法(和積代入法)
注意:當求值的代數式是字母的“對稱式”時,通??梢曰癁樽帜浮昂团c積”的形式,從而用“和積代入法”求值。
11、解含參方程
方程中除過未知數以外,含有的其它字母叫參數,這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
(1)按照類型求解
(2)根據需要討論
(3)分類寫出結論
12、恒相等成立的有用條件
(1)ax+b=0對于任意x都成立關于x的方程ax+b=0有無數個解a=0且b=0。
(2)ax2+bx+c=0對于任意x都成立關于x的方程ax2+bx+c=0有無數解a=0、b=0、c=0。
13、恒不等成立的條件
由一元二次不等式解集為R的有關結論容易得到下列恒不等成立的條件:
14、平移規(guī)律
圖像的平移規(guī)律是研究復雜函數的重要方法。平移規(guī)律是:
15、圖像法
討論函數性質的重要方法是圖像法——看圖像、得性質。
定義域圖像在X軸上對應的部分
值域圖像在Y軸上對應的部分
單調性從左向右看,連續(xù)上升的一段在X軸上對應的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對應的區(qū)間是減區(qū)間。
最值圖像點處有值,圖像最低點處有最小值
奇偶性關于Y軸對稱是偶函數,關于原點對稱是奇函數
16、函數、方程、不等式間的重要關系
方程的根
高考數學答題竅門
1、審題要慢,答題要快
有些考生只知道一味求快,往往題意未清,便匆忙動筆,結果誤入歧途,即所謂欲速則不達,看錯一個字可能會遺憾終生,所以審題一定要慢,有了這個“慢”,才能形成完整的合理的解題策略,才有答題的“快”。
2、運算要準,膽子要大
高考沒有足夠的時間讓你反復驗算,更不容你一再地變換解題方法,往往是拿到一個題目,憑感覺選定一種方法就動手做,這時除了你的每一步運算務求正確外,還要求把你當時的解法堅持到底,也許你選擇的不是最好的方法,但如回頭重來將會花費更多的時間,當然堅持到底并不意味著鉆牛角尖,一旦發(fā)現自己走進死胡同,還是要立刻迷途知返。
3、先易后難,敢于放棄
能夠增強信心,使思維趨向,對發(fā)揮水平極為有利;另一方面如果先做難題,可能會浪費好多時間,即使難關被攻克,卻已沒有時間去得那些易得的分數,所以關鍵時刻,敢于放棄,也是一種明智的選擇。有些解答題第一問就很難,這時可以先放棄第一問,而直接使用第一問的結論解決第2問、第3問。
4、先熟后生,合理用時
面對熟悉的題目,自然象吃了定心丸,做起來得心應手,會使你獲得好心情,并且可以在最短時間內完成,留下更多的時間來思考那些不熟悉的題目。有些題目需花很多時間卻只得到很少分數,有些題目只要花很少時間卻有很高的分值。所以應先把時間用在那些較易題或分值較高題目上,最大限度地提高時間的利用率。