學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納

時(shí)間: 維維0 分享

我學(xué)習(xí)了一生,現(xiàn)在我還在學(xué)習(xí),而將來(lái),只要我還有精力,我還要學(xué)習(xí)下去。下面給大家?guī)?lái)一些關(guān)于高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納,希望對(duì)大家有所幫助。

高二數(shù)學(xué)知識(shí)點(diǎn)歸納1

立體幾何初步

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

高二數(shù)學(xué)知識(shí)點(diǎn)歸納2

1、學(xué)會(huì)三視圖的分析:

2、斜二測(cè)畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時(shí),把它畫成對(duì)應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長(zhǎng)不變,平行于y軸的線段長(zhǎng)減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

⑶臺(tái)體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

⑷球體:①表面積:S=;②體積:V=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數(shù)學(xué)知識(shí)點(diǎn)歸納3

1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

高二數(shù)學(xué)知識(shí)點(diǎn)歸納4

空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。

③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

高二數(shù)學(xué)知識(shí)點(diǎn)歸納5

一、隨機(jī)事件

主要掌握好(三四五)

(1)事件的三種運(yùn)算:并(和)、交(積)、差;注意差A(yù)-B可以表示成A與B的逆的積。

(2)四種運(yùn)算律:交換律、結(jié)合律、分配律、德莫根律。

(3)事件的五種關(guān)系:包含、相等、互斥(互不相容)、對(duì)立、相互獨(dú)立。

二、概率定義

(1)統(tǒng)計(jì)定義:頻率穩(wěn)定在一個(gè)數(shù)附近,這個(gè)數(shù)稱為事件的概率;(2)古典定義:要求樣本空間只有有限個(gè)基本事件,每個(gè)基本事件出現(xiàn)的可能性相等,則事件A所含基本事件個(gè)數(shù)與樣本空間所含基本事件個(gè)數(shù)的比稱為事件的古典概率;

(3)幾何概率:樣本空間中的元素有無(wú)窮多個(gè),每個(gè)元素出現(xiàn)的可能性相等,則可以將樣本空間看成一個(gè)幾何圖形,事件A看成這個(gè)圖形的子集,它的概率通過子集圖形的大小與樣本空間圖形的大小的比來(lái)計(jì)算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、概率性質(zhì)與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含于A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨(dú)立,則P(AB)=P(A)P(B);

(4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個(gè)事件B可以在多種情形(原因)A1,A2,....,An下發(fā)生,則用全概率公式求B發(fā)生的概率;如果事件B已經(jīng)發(fā)生,要求它是由Aj引起的概率,則用貝葉斯公式.

(5)二項(xiàng)概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當(dāng)一個(gè)問題可以看成n重貝努力試驗(yàn)(三個(gè)條件:n次重復(fù),每次只有A與A的逆可能發(fā)生,各次試驗(yàn)結(jié)果相互獨(dú)立)時(shí),要考慮二項(xiàng)概率公式.

高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納相關(guān)文章

2020高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

高二數(shù)學(xué)??贾R(shí)點(diǎn)總結(jié)

2018高二數(shù)學(xué)會(huì)考知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)知識(shí)點(diǎn)最新歸納

高二數(shù)學(xué)推理知識(shí)點(diǎn)大總結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)小結(jié)

高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納

我學(xué)習(xí)了一生,現(xiàn)在我還在學(xué)習(xí),而將來(lái),只要我還有精力,我還要學(xué)習(xí)下去。下面給大家?guī)?lái)一些關(guān)于高二數(shù)學(xué)知識(shí)點(diǎn)最新歸納,希望對(duì)大家有所幫助。高二數(shù)學(xué)知識(shí)點(diǎn)歸納1立體幾何初步1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征(1)棱柱:幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。(2)棱錐幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺(tái):幾何特征:①上下底面是相似的平行多邊形②側(cè)
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

精選文章

  • 高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理
    高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納整理

    有很多的同學(xué)是非常想知道,高中必考數(shù)學(xué)知識(shí)點(diǎn)有哪些,下面給大家?guī)?lái)一些關(guān)于高中數(shù)學(xué)必考知識(shí)點(diǎn)歸納,希望對(duì)大家有所幫助。高中數(shù)學(xué)必考知識(shí)點(diǎn)

  • 高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)
    高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)

    經(jīng)常不斷地學(xué)習(xí),你就什么都知道。你知道得越多,你就越有力量。下面給大家?guī)?lái)一些關(guān)于高二數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié),希望對(duì)大家有所幫助。高二數(shù)學(xué)

  • 高二數(shù)學(xué)學(xué)習(xí)計(jì)劃2021
    高二數(shù)學(xué)學(xué)習(xí)計(jì)劃2021

    暑假馬上就要到了,暑假之后就是高三。在這兩個(gè)月,做一個(gè)數(shù)學(xué)的學(xué)習(xí)計(jì)劃,有利于提高成績(jī)。下面給大家分享一些關(guān)于高二數(shù)學(xué)學(xué)習(xí)計(jì)劃2021,希望對(duì)大

  • 高三數(shù)學(xué)知識(shí)點(diǎn)精選歸納
    高三數(shù)學(xué)知識(shí)點(diǎn)精選歸納

    奮斗也就是我們平常所說(shuō)的努力。那種不怕苦,不怕累的精神在學(xué)習(xí)中也是需要的??吹搅艘坏烙幸馑嫉念},就不惜一切代價(jià)攻克它。為了學(xué)習(xí),廢寢忘食

774508