高二數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)
高二數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)2022
總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書(shū)面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),我想我們需要寫(xiě)一份總結(jié)了吧。那么我們?cè)撛趺慈?xiě)總結(jié)呢?下面是小編給大家?guī)?lái)的高二數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié),以供大家參考!
高二數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)
1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線
x=-b/2a。
對(duì)稱(chēng)軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P(-b/2a,(4ac-b^2)/4a)
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。
|a|越大,則拋物線的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)大全
1.萬(wàn)能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2 cosa_cosb=[cos(a+b)+cos(a-b)]/2 sina_sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(hào)(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2 Cosα=向量a_向量b/|向量a|_|向量b| (x1x2+y1y2) 根號(hào)(x1平方+y1 平方)_根號(hào)(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a_向量b=0 如果向量a//向量b 那么向量a_向量b=|向量a|_|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a_向量b =(向量a向量b)平方
高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)梳理
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的.性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
高二數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)相關(guān)文章:
★ 高二數(shù)學(xué)科目的知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(人教版)
★ 高二數(shù)學(xué)必考的知識(shí)點(diǎn)有多少
★ 高二數(shù)學(xué)學(xué)考必考知識(shí)點(diǎn)概括
★ 高二數(shù)學(xué)選修的必學(xué)知識(shí)點(diǎn)總結(jié)
★ 高二數(shù)學(xué)考試必考知識(shí)點(diǎn)
★ 高二數(shù)學(xué)知識(shí)點(diǎn)歸納
★ 高二數(shù)學(xué)知識(shí)的重點(diǎn)要點(diǎn)的總結(jié)