關于七年級數學知識點
在學習中,說起知識點,應該沒有人不熟悉吧?知識點也不一定都是文字,數學的知識點除了定義,同樣重要的公式也可以理解為知識點。下面是小編為大家精心整理的關于七年級數學知識點,希望對大家有所幫助。
有理數
一.正數和負數
⒈正數和負數的概念
負數:比0小的數 正數:比0大的數 0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。
2.具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數: 比原先多了的數,增加增長了的數一般記為正數;相反,比原先少了的數,減少降低了的數一般記為負數。 3。0表示的意義
⑴0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
⑵0是正數和負數的分界線,0既不是正數,也不是負數。
二.有理數
1.有理數的概念
⑴正整數、0、負整數統(tǒng)稱為整數(0和正整數統(tǒng)稱為自然數)
⑵正分數和負分數統(tǒng)稱為分數
⑶正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環(huán)小數,不能寫成分數形式,不是有理數。②有限小數和無限循環(huán)小數都可化成分數,都是有理數。
注意:引入負數以后,奇數和偶數的范圍也擴大了,像—2,—4,—6,—8?也是偶數,—1,—3,—5?也是奇數。
2.(1)凡能寫成q(p,q為整數且p?0)形式的數,都是有理數。正整數、0、負整數統(tǒng)稱整數;正分數、負p
分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;?不是有理數;
(一)正負數
1.正數:大于0的數。
2.負數:小于0的數。
3.0即不是正數也不是負數。
4.正數大于0,負數小于0,正數大于負數。
(二)有理數
1.有理數:由整數和分數組成的數。包括:正整數、0、負整數,正分數、負分數。可以寫成兩個整之比的形式。(無理數是不能寫成兩個整數之比的形式,它寫成小數形式,小數點后的數字是無限不循環(huán)的。如:π)
2.整數:正整數、0、負整數,統(tǒng)稱整數。
3.分數:正分數、負分數。
(三)數軸
1.數軸:用直線上的點表示數,這條直線叫做數軸。(畫一條直線,在直線上任取一點表示數0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當的長度為單位長度,以便在數軸上取點。)
2.數軸的三要素:原點、正方向、單位長度。
3.相反數:只有符號不同的兩個數叫做互為相反數。0的相反數還是0。
4.絕對值:正數的絕對值是它本身,負數的絕對值是它的相反數;0的絕對值是0,兩個負數,絕對值大的反而小。
(四)有理數的加減法
1.先定符號,再算絕對值。
2.加法運算法則:同號相加,到相同符號,并把絕對值相加。異號相加,取絕對值大的加數的符號,并用較大的絕對值減去較小的絕對值。互為相反數的兩個數相加得0。一個數同0相加減,仍得這個數。
3.加法交換律:a+b=b+a兩個數相加,交換加數的位置,和不變。
4.加法結合律:(a+b)+c=a+(b+c)三個數相加,先把前兩個數相加,或者先把后兩個數相加,和不變。5.a?b=a+(?b)減去一個數,等于加這個數的相反數。
(五)有理數乘法(先定積的符號,再定積的大?。?/p>
1.同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
2.乘積是1的兩個數互為倒數。
3.乘法交換律:ab=ba
4.乘法結合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理數除法
1.先將除法化成乘法,然后定符號,最后求結果。
2.除以一個不等于0的數,等于乘這個數的倒數。
3.兩數相除,同號得正,異號得負,并把絕對值相除,0除以任何一個不等于0的數,都得0。
(七)乘方
1.求n個相同因數的積的運算,叫做乘方。寫作an。(乘方的結果叫冪,a叫底數,n叫指數)
2.負數的奇數次冪是負數,負數的偶次冪是正數;0的任何正整數次冪都是0。
3.同底數冪相乘,底不變,指數相加。
4.同底數冪相除,底不變,指數相減。
(八)有理數的加減乘除混合運算法則
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進行。
3.如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。
(九)科學記數法、近似數、有效數字。
整式的加減
1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。
2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;單項式中所有字母指數的和,叫單項式的次數。
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
5.整式:①單項式②多項式。
6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項。
7.合并同類項法則:系數相加,字母與字母的指數不變。
8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。
9.整式的加減:
一找:(劃線);
二“+”:(務必用+號開始合并);
三合:(合并)。
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列)。
一元一次方程
1.等式:用“=”號連接而成的式子叫等式。
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。
3.方程:含未知數的等式,叫方程。
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;
注意:“方程的解就能代入”。
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1。
6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
8.一元一次方程解法的一般步驟:
化簡方程----------分數基本性質。
去分母----------同乘(不漏乘)最簡公分母。
去括號----------注意符號變化。
移項----------變號(留下靠前)。
合并同類項--------合并后符號。
系數化為1---------除前面。
9.列一元一次方程解應用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”。
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:…………多用于“行程問題”。
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
數軸
⒈數軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數軸。
注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不
可;⑶同一數軸上的單位長度要統(tǒng)一;⑷數軸的三要素都是根據實際需要規(guī)定的。
2.數軸上的點與有理數的關系
⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關系。(如,數軸上的點π不是有理數)
3.利用數軸表示兩數大小
⑴在數軸上數的大小比較,右邊的數總比左邊的數大;
⑵正數都大于0,負數都小于0,正數大于負數;
⑶兩個負數比較,距離原點遠的數比距離原點近的數小。
4.數軸上特殊的(小)數
⑴最小的自然數是0,無的自然數;
⑵最小的正整數是1,無的正整數;
⑶的負整數是-1,無最小的負整數
5.a可以表示什么數
⑴a>0表示a是正數;反之,a是正數,則a>0;
⑵a<0表示a是負數;反之,a是負數,則a<0
⑶a=0表示a是0;反之,a是0,,則a=0