八年級數(shù)學(xué)的知識點總結(jié)
只有學(xué)習(xí)精彩,生命才精彩,只有學(xué)習(xí)成功,事業(yè)才成功。每一門科目都有自己的學(xué)習(xí)方法,數(shù)學(xué)作為最燒腦的科目之一,需要不斷的練習(xí)。下面是小編給大家整理的一些八年級數(shù)學(xué)的知識點,希望對大家有所幫助。
初二上學(xué)期數(shù)學(xué)知識點歸納
一、勾股定理
1、勾股定理
直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。
3、勾股數(shù)
滿足的三個正整數(shù),稱為勾股數(shù)。
常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。
二、證明
1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。
2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。
(1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。
(2)三角形的外角與它相鄰的內(nèi)角是互為補角。
3、三角形的外角與它不相鄰的內(nèi)角關(guān)系
(1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
(2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
4、證明一個命題是真命題的基本步驟
(1)根據(jù)題意,畫出圖形。
(2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。
(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。
三、數(shù)據(jù)的分析
1、平均數(shù)
①一般地,對于n個數(shù)x1x2...xn,我們把(x1+x2+???+xn)叫做這n個數(shù)的算數(shù)平均數(shù),簡稱平均數(shù)記為。
②在實際問題中,一組數(shù)據(jù)里的各個數(shù)據(jù)的“重要程度”未必相同,因而在計算,這組數(shù)據(jù)的平均數(shù)時,往往給每個數(shù)據(jù)一個權(quán),叫做加權(quán)平均數(shù)。
2、中位數(shù)與眾數(shù)
①中位數(shù):一般地,n個數(shù)據(jù)按大小順序排列,處于最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。
②一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。
③平均數(shù)、中位數(shù)和眾數(shù)都是描述數(shù)據(jù)集中趨勢的統(tǒng)計量。
④計算平均數(shù)時,所有數(shù)據(jù)都參加運算,它能充分地利用數(shù)據(jù)所提供的信息,因此在現(xiàn)實生活中較為常用,但他容易受極端值影響。
⑤中位數(shù)的優(yōu)點是計算簡單,受極端值影響較小,但不能充分利用所有數(shù)據(jù)的信息。
⑥各個數(shù)據(jù)重復(fù)次數(shù)大致相等時,眾數(shù)往往沒有特別意義。
3、從統(tǒng)計圖分析數(shù)據(jù)的集中趨勢
4、數(shù)據(jù)的離散程度
①實際生活中,除了關(guān)心數(shù)據(jù)的集中趨勢外,人們還關(guān)注數(shù)據(jù)的離散程度,即它們相對于集中趨勢的偏離情況。一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差,(稱為極差),就是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量。
②數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差刻畫。
③方差是各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù)。
④其中是x1,x2.....xn平均數(shù),s2是方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根。
⑤一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
八年級上冊數(shù)學(xué)知識點滬科版
(一)運用公式法
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。
2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數(shù):三項
②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。
③有一項是這兩個數(shù)的積的兩倍。
(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
一、克服心理疲勞
第一,要有明確的學(xué)習(xí)目的。學(xué)習(xí)就像從河里抽水,動力越足,水流量越大。動力來源于目的,只有樹立正確的學(xué)習(xí)目的,才會產(chǎn)生強(qiáng)大的學(xué)習(xí)動力;第二,要培養(yǎng)濃厚的學(xué)習(xí)興趣。興趣的形成與大腦皮層的興奮中心相聯(lián)系,并伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產(chǎn)生正是大腦皮層抵制的消極情緒引起的。因此,培養(yǎng)自己的學(xué)習(xí)興趣,是克服心理疲勞的關(guān)鍵所在。有了興趣,學(xué)習(xí)才會有積極性、自覺性、主動性,才能使心理處于一種良好的競技狀態(tài);第三,要注意學(xué)習(xí)的多樣化,書本學(xué)習(xí)本身就是枯燥單調(diào)的,如果多次重復(fù)學(xué)習(xí)某門課程或章節(jié)內(nèi)容,易使大腦皮層產(chǎn)生抑制,出現(xiàn)心理飽和,產(chǎn)生厭倦情緒。所以考生不妨將各門課程交替起來進(jìn)行復(fù)習(xí)。
二、戰(zhàn)勝高原現(xiàn)象
復(fù)習(xí)中的高原現(xiàn)象,是指在復(fù)習(xí)到一定時期時,往往停滯不前,不僅復(fù)習(xí)不見進(jìn)步,反而有退步的現(xiàn)象。在高原期內(nèi),并非學(xué)習(xí)毫無進(jìn)步,而是某部分進(jìn)步,另外一些部分則退步,兩者相抵,致使復(fù)習(xí)成效未從根本上發(fā)生變化,因而使人灰心失望。當(dāng)考生在復(fù)習(xí)迎考過程中遭遇高原期時,切忌急躁或喪失信心,應(yīng)找出學(xué)習(xí)方法、學(xué)習(xí)積極性等方面的原因。及時調(diào)整復(fù)習(xí)進(jìn)度,在科學(xué)用腦、提高復(fù)習(xí)效率上多下功夫。
三、重視復(fù)習(xí)“錯誤”
如果在復(fù)習(xí)中不善于從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復(fù)習(xí)之外,非常關(guān)鍵的問題就是找出原因,不斷復(fù)習(xí)錯誤。即定期翻閱錯題,回想錯誤的原因,并對各種錯題及錯誤原因進(jìn)行分類整理。對其中那些反復(fù)錯誤的問題還可考慮再做一遍,以絕“后患”。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。
四、把握心理特點搞好考前復(fù)習(xí)
實踐證明,一個人在氣質(zhì)、性格、心理穩(wěn)定程度等因素也會影響考前復(fù)習(xí)。考生在復(fù)習(xí)迎考過程中,應(yīng)根據(jù)自己的心理特點來制訂復(fù)習(xí)迎考計劃,根據(jù)自己的心態(tài)來調(diào)整復(fù)習(xí)的進(jìn)度,選擇與運用的復(fù)習(xí)方式方法,使自己的考前復(fù)習(xí)達(dá)到預(yù)期的效果。
1、課本不容忽視
對于初二的學(xué)生來說,都在學(xué)習(xí)新課,課本是大家都容易忽視的一個重要的復(fù)習(xí)資料。平時在學(xué)校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學(xué)們在翻看筆記的同時,對照課本,把學(xué)過的知識點反復(fù)閱讀、理解,并對照課后練習(xí)里的習(xí)題進(jìn)行反復(fù)思考、琢磨、融會貫通,加深對知識點的理解。對于課本上的重點內(nèi)容、重點例題也要著重記憶。
2、錯題本
相信學(xué)習(xí)習(xí)慣好的學(xué)生都應(yīng)該有一本錯題本,把每次習(xí)題、作業(yè)、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發(fā)現(xiàn)自己知識和能力上的薄弱點,經(jīng)常拿出來翻看,遇到反復(fù)做錯的題目,要主動和同學(xué)商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。
八年級數(shù)學(xué)的知識點總結(jié)相關(guān)文章:
★ 人教版八年級數(shù)學(xué)上冊知識點總結(jié)
★ 八年級數(shù)學(xué)上學(xué)期知識點總結(jié)