排列組合的數(shù)學(xué)公式
排列組合的數(shù)學(xué)公式
排列組合是組合學(xué)最基本的概念。所謂排列,就是指從給定個數(shù)的元素中取出指定個數(shù)的元素進(jìn)行排序。那么排列組合有哪些數(shù)學(xué)公式呢?接下來學(xué)習(xí)啦小編為你整理了排列組合的數(shù)學(xué)公式,一起來看看吧。
排列組合的數(shù)學(xué)公式
1.排列及計(jì)算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個寶雞博瀚教育元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號 p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(規(guī)定0!=1).
2.組合及計(jì)算公式
從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號
c(n,m) 表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為n!/(n1!*n2!*...*nk!).
k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標(biāo)和下標(biāo)) =n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標(biāo)和下標(biāo)) =1 ;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m
排列組合的數(shù)學(xué)解題技巧
1. 掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
2. 理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
3. 理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
4. 掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
5. 了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
6. 了解等可能性事件的概率的意義,會用排列組合的基本公式計(jì)算一些等可能性事件的概率。
7. 了解互斥事件、相互獨(dú)立事件的意義,會用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
8. 會計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率
排列組合的數(shù)學(xué)解題思路
1特殊優(yōu)先法
對于存在特殊元素或者特殊位置的排列組合問題,我們可以從這些特殊的東西入手,先解決特殊元素或特殊位置,再去解決其它元素或位置, 這種解法叫做特殊優(yōu)先法.
例如: 用0,1,2,3,4這5個數(shù)字,組成沒有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有________個.(答案:30個)
2科學(xué)分類法
對于較復(fù)雜的排列組合問題,由于情況繁多,因此要對各種不同情況,進(jìn)行科學(xué)分類,以便有條不紊地進(jìn)行解答,避免重復(fù)或遺漏現(xiàn)象發(fā)生.
例 如:從6臺原裝計(jì)算機(jī)和5臺組裝計(jì)算機(jī)中任取5臺,其中至少有原裝與組裝計(jì)算機(jī)各兩臺,則不同的選取法有_______種.(答案:350)
3插空法
解決一些不相鄰問題時,可以先排一些元素然后插入其余元素,使問題得以解決.
例如:7人站成一行,如果甲乙兩人不相鄰,則不同排法種數(shù)是______.(答案:3600)
4捆綁法
相鄰元素的排列,可以采用"整體到局部"的排法,即將相鄰的元素當(dāng)成"一個"元素進(jìn)行排列,然后再局部排列.
例如:6名同學(xué)坐成一排,其中甲,乙必須坐在一起的不同坐法是________種.(答案:240)
5排除法
從總體中排除不符合條件的方法數(shù),這是一種間接解題的方法.
b,排列組合應(yīng)用題往往和代數(shù),三角,立體幾何,平面解析幾何的某些知識聯(lián)系,從而增加了問題的綜合性,解答這類應(yīng)用題時,要注意使用相關(guān)知識 對答案進(jìn)行取舍.
猜你感興趣的: