學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) >

高三理科數(shù)學(xué)上學(xué)期期末試卷

時間: 詩盈1200 分享

  數(shù)學(xué)有很多的同學(xué)會說很難,其實(shí)難在哪里我們要找到原因,小編今天下面就給大家整理高三數(shù)學(xué),希望大家多多參考一下

  上學(xué)期高三數(shù)學(xué)理科期末試題

  一、選擇題(本大題共8小題,共40.0分)

  1.若集合A={x|-2

  A. B. C. D.

  【答案】C

  【解析】

  【分析】

  直接利用交集運(yùn)算得答案.

  【詳解】∵集合 表示 到0的所有實(shí)數(shù),

  集合 表示5個整數(shù)的集合,∴ ,

  故選C.

  【點(diǎn)睛】本題主要考查了交集的概念及其運(yùn)算,是基礎(chǔ)題.

  2.下列復(fù)數(shù)為純虛數(shù)的是( )

  A. B. C. D.

  【答案】D

  【解析】

  【分析】

  直接利用復(fù)數(shù)的運(yùn)算對每個選項(xiàng)逐一求解即可得答案.

  【詳解】∵ , , , ,

  ∴為純虛數(shù)的是 ,故選D.

  【點(diǎn)睛】本題主要考查了復(fù)數(shù)的基本運(yùn)算及基本概念,是基礎(chǔ)題

  3.下列函數(shù)中,是奇函數(shù)且存在零點(diǎn)的是( )

  A. B. C. D.

  【答案】A

  【解析】

  【分析】

  由函數(shù)的奇偶性及函數(shù)的零點(diǎn)可判斷 為奇函數(shù),且存在零點(diǎn)為 , 為非奇非偶函數(shù), 為偶函數(shù), 不存在零點(diǎn),故得解.

  【詳解】對于選項(xiàng)A: 為奇函數(shù),且存在零點(diǎn)為x=0,與題意相符;

  對于選項(xiàng)B: 為非奇非偶函數(shù),與題意不符;

  對于選項(xiàng)C: 為偶函數(shù),與題意不符;

  對于選項(xiàng)D: 不存在零點(diǎn),與題意不符,故選:A.

  【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性及函數(shù)的零點(diǎn),熟練掌握常見初等函數(shù)的性質(zhì)是解題的關(guān)鍵,屬于簡單題.

  4.執(zhí)行如圖所示的程序框圖,如果輸入 ,則輸出 的等于( )

  A. 3 B. 12 C. 60 D. 360

  【答案】C

  【解析】

  【分析】

  通過程序框圖,按照框圖中的要求將幾次的循環(huán)結(jié)果寫出,得到輸出的結(jié)果.

  【詳解】模擬執(zhí)行程序,可得 , , , , ,

  滿足條件 ,執(zhí)行循環(huán)體, , ,

  滿足條件 ,執(zhí)行循環(huán)體, , ,

  不滿足條件 ,退出循環(huán),輸出 的值為60.

  故選C.

  【點(diǎn)睛】本題考查程序框圖的應(yīng)用,解決程序框圖中的循環(huán)結(jié)構(gòu)的輸出結(jié)果問題時,常采用寫出幾次的結(jié)果找規(guī)律,屬于基礎(chǔ)題.

  5.“ ”是“函數(shù) 的圖像關(guān)于直線 對稱”的( )

  A. 充分而不必要條件 B. 必要而不充分條件

  C. 充分必要條件 D. 既不充分也不必要條件

  【答案】A

  【解析】

  【分析】

  根據(jù)三角函數(shù)的對稱性求出函數(shù)的對稱軸為 ,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

  【詳解】若函數(shù) 的圖象關(guān)于直線 ,則 ,得 ,

  當(dāng) 時, ,即“ ”是“函數(shù) 的圖象關(guān)于直線 對稱”的充分不必要條件,故選A.

  【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合三角函數(shù)的對稱性求出 的取值范圍是解決本題的關(guān)鍵.

  6.某三棱錐的三視圖如圖所示,在此三棱錐的六條棱中,最長棱的長度為( )

  A. 2 B. C. D. 3

  【答案】D

  【解析】

  【分析】

  由三棱錐的三視圖知該三棱錐是三棱錐 ,其中 底面 , , , ,由此能求出在該三棱錐中,最長的棱長.

  【詳解】由三棱錐的三視圖知該三棱錐是如圖所示的三棱錐 ,

  其中 底面 , , , ,

  ∴ ,

  ∴在該三棱錐中,最長的棱長為 ,故選D.

  【點(diǎn)睛】本題考查三棱錐中最長棱長的求法,考查三棱錐性質(zhì)及其三視圖等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,是基礎(chǔ)題.

  7.在極坐標(biāo)系中,下列方程為圓 的切線方程的是( )

  A. B. C. D.

  【答案】C

  【解析】

  【分析】

  首先求出圓的直角坐標(biāo)方程為 ,圓心為 ,半徑 ,將每個選項(xiàng)分別利用直角坐標(biāo)表示,根據(jù)直線與圓的位置關(guān)系能求出結(jié)果.

  【詳解】圓 ,即 ,

  ∴圓的直角坐標(biāo)方程為 ,即 ,圓心為 ,半徑 ,

  在A中, 即 ,

  圓心 到 的距離 ,故 不是圓的切線,故A錯誤;

  在B中, 是圓,不是直線,故B錯誤;

  在C中, 即 ,

  圓心 到 的距離 ,故 是圓的切線,故C正確;

  在D中, 即 ,

  圓心 到 的距離 ,故 不是圓的切線,故D錯誤.

  故選C.

  【點(diǎn)睛】本題考查圓的切線方程的判斷,考查直角坐標(biāo)方程、參數(shù)方程、極坐標(biāo)方程的互化等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.

  8.地震里氏震級是地震強(qiáng)度大小的一種度量.地震釋放的能量E(單位:焦耳)與地震里氏震級M之間的關(guān)系為lgE=4.8+1.5M.已知兩次地震的里氏震級分別為8.0級和7.5級,若它們釋放的能量分別為E1和E2,則 的值所在的區(qū)間為( )

  A. B. C. D.

  【答案】B

  【解析】

  【分析】

  先把數(shù)據(jù)代入已知解析式,再利用對數(shù)的運(yùn)算性質(zhì)即可得出.

  【詳解】 ,

  ∴ , ,

  ∴ , ,∴ ,

  ∵ , , ,

  ∴ ,

  ∴ 的值所在的區(qū)間為 ,故選B.

  【點(diǎn)睛】本題考查了對數(shù)的運(yùn)用以及運(yùn)算,熟練掌握對數(shù)的運(yùn)算性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.

  二、填空題(本大題共6小題,共30.0分)

  9.若 滿足 ,則 的最小值為______.

  【答案】4

  【解析】

  【分析】

  作出不等式組 對應(yīng)的平面區(qū)域,利用 的幾何意義即可得到結(jié)論.

  【詳解】作出 , 滿足 對應(yīng)的平面區(qū)域,

  由 ,得 ,平移直線 ,

  由 ,解得

  由圖象可知當(dāng)直線經(jīng)過點(diǎn) 時,直線 的截距最小,此時最小,

  此時 ,故答案為4.

  【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.

  10.已知雙曲線 - =1的一個焦點(diǎn)為 ,則m=______.

  【答案】3

  【解析】

  【分析】

  由雙曲線的焦點(diǎn)坐標(biāo)可得的值,列出關(guān)于 的方程,解出即可.

  【詳解】雙曲線 的一個焦點(diǎn)為 ,即 ,

  解得 ,故答案為3.

  【點(diǎn)睛】本題主要考查雙曲線的標(biāo)準(zhǔn)方程,注意分析、 的關(guān)系,屬于基礎(chǔ)題.

  11.若等差數(shù)列{an}和等比數(shù)列{bn}滿足a1=-1,b1=2,a3+b2=-1,試寫出一組滿足條件的數(shù)列{an}和{bn}的通項(xiàng)公式:an=______,bn=______.

  【答案】 (1). -n (2). 2

  【解析】

  【分析】

  設(shè)等差數(shù)列的公差為 ,等比數(shù)列的公比為 ,由等差數(shù)列和等比數(shù)列的通項(xiàng)公式,解方程可得 , ,即可得到所求通項(xiàng)公式,注意答案不唯一.

  【詳解】等差數(shù)列 的公差設(shè)為 ,等比數(shù)列 的公比設(shè)為 ,

  , , ,可得 ,

  即為 , 可取 ,可得 ,則 , ,

  故答案為 ,2.

  【點(diǎn)睛】本題主要考查等差數(shù)列和等比數(shù)列的通項(xiàng)公式的運(yùn)用,考查方程思想和運(yùn)算能力,屬于基礎(chǔ)題.

  12.在菱形ABCD中,若 ,則 的值為______.

  【答案】

  【解析】

  【分析】

  根據(jù)菱形的對角線互相垂直且平分,則 ,結(jié)合平面向量的數(shù)量積公式計(jì)算即可.

  【詳解】菱形 中, ,由 可得

  則 ,

  故答案為 .

  【點(diǎn)睛】本題考查了平面向量的數(shù)量積計(jì)算問題,由菱形的性質(zhì)得到 是解題的關(guān)鍵,屬于基礎(chǔ)題.

  13.函數(shù) 在區(qū)間 上的最大值為______.

  【答案】

  【解析】

  【分析】

  利用兩角差的正弦與余弦公式化簡,根據(jù) 在 上,結(jié)合三角函數(shù)的性質(zhì)可得最大值.

  【詳解】函數(shù)

  ;

  ∵ ,∴當(dāng) 時, 取得最大值為 ,

  故答案為 .

  【點(diǎn)睛】本題主要考查了兩角和與差公式的應(yīng)用和計(jì)算能力,得到 是解題的關(guān)鍵,屬于基礎(chǔ)題.

  14.已知函數(shù)f(x)為定義域?yàn)镽,設(shè)Ff(x)= .

 ?、偃鬴(x)= ,則Ff(1)=______;

 ?、谌鬴(x)=ea-|x|-1,且對任意x∈R,F(xiàn)f(x)=f(x),則實(shí)數(shù)a的取值范圍為______.

  【答案】 (1). (2).

  【解析】

  【分析】

 ?、偻ㄟ^ 的范圍,可得 ,代入可得所求值;②由題意可得 恒成立,運(yùn)用絕對值不等式的性質(zhì)和參數(shù)分離,以及函數(shù)的最值求法,可得的范圍.

  【詳解】①若 ,由 ,可得 ,成立,即有 ,則 ;

 ?、谌?,且對任意 , ,可得 恒成立,即為 ,即有 ,可得 ,即 ,

  由 的最小值為 ,則 ,故答案為 , .

  【點(diǎn)睛】本題主要考查分段函數(shù)的運(yùn)用:求函數(shù)值和解析式,考查變形能力和轉(zhuǎn)化思想,注意運(yùn)用參數(shù)分離和絕對值不等式的性質(zhì),將問題轉(zhuǎn)化為 恒成立是解決②的關(guān)鍵,屬于中檔題

  三、解答題(本大題共6小題,共80.0分)

  15.在△ABC中, .

  (1)求∠B的大小;

  (2)若△ABC的面積為a2,求cosA的值.

  【答案】(1) ;(2)

  【解析】

  【分析】

  (1)由正弦定理可得 ,結(jié)合范圍 ,可求 的值;(2)利用三角形的面積公式可求的值,根據(jù)余弦定理可求 的值,進(jìn)而可求 的值.

  【詳解】(1)在△ABC中,由正弦定理可得: ,

  所以: ,

  又 , .

  (2)因?yàn)椤鰽BC的面積為 ,

  ∴ 2 ,

  由余弦定理, ,所以 .

  .

  【點(diǎn)睛】本題主要考查了正弦定理,三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題

  16.某中學(xué)有學(xué)生500人,學(xué)校為了解學(xué)生的課外閱讀時間,從中隨機(jī)抽取了50名學(xué)生,獲得了他們某一個月課外閱讀時間的數(shù)據(jù)(單位:小時),將數(shù)據(jù)分為5組:[10,12),[12,14),[14,16),[16,18),[18,20],整理得到如圖所示的頻率分布直方圖.

  (1)求頻率分布直方圖中的x的值;

  (2)試估計(jì)該校所有學(xué)生中,課外閱讀時間不小于16小時的學(xué)生人數(shù);

  (3)已知課外閱讀時間在[10,12)的樣本學(xué)生中有3名女生,現(xiàn)從閱讀時間在[10,12)的樣本學(xué)生中隨機(jī)抽取3人,記X為抽到女生的人數(shù),求X的分布列與數(shù)學(xué)期望E(X).

  【答案】(1)0.15;(2)150;(3)見解析

  【解析】

  【分析】

  (1)利用頻率分布直方圖,通過概率和為1,即可求解 ;(2)利用分布直方圖求解即可;(3)隨機(jī)變量 的所有可能取值為0,1,2,3,求出概率得到分布列,然后求解期望.

  【詳解】(1)由 ,

  可得 0.15

  (2) ,

  即課外閱讀時間不小于16個小時的學(xué)生樣本的頻率為0.30.500×0.30=150,

  所以可估計(jì)該校所有學(xué)生中,課外閱讀時間不小于16個小時的學(xué)生人數(shù)為150.

  (3)課外閱讀時間在[10,12)的學(xué)生樣本的頻率為0.08×2=0.16,50×0.16=8,即閱讀時間在[10,12)的學(xué)生樣本人數(shù)為8,8名學(xué)生為3名女生,5名男生,

  隨機(jī)變量X的所有可能取值為0,1,2,3, ; ; ; .

  所以X的分布列為:

  X 0 1 2 3

  P

  故 的期望

  【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列以及期望的求法,頻率分布直方圖的應(yīng)用,考查計(jì)算能力,屬于中檔題.

  17.如圖1,在四邊形ABCD中,AD∥BC,BC=2AD,E,F(xiàn)分別為AD,BC的中點(diǎn),AE=EF, .將四邊形ABFE沿EF折起,使平面ABFE⊥平面EFCD(如圖2),G是BF的中點(diǎn).

  (1)證明:AC⊥EG;

  (2)在線段BC上是否存在一點(diǎn)H,使得DH∥平面ABFE?若存在,求 的值;若不存在,說明理由;

  (3)求二面角D-AC-F的大小.

  【答案】(1)見解析;(2)見解析;(3)

  【解析】

  【分析】

  (1)推導(dǎo)出 , , ,從而 平面 ,進(jìn)而 ,四邊形 為正方形, ,由此能證明 平面 ,從而 ;(2)由 , , 兩兩垂直,建立空間直角坐標(biāo)系 ,由此利用向量法能求出在線段 上存在一點(diǎn) ,使得 平面 ,并能求出 的值;(3)求出平面 的法向理和平面 的法向量,利用向量法能求出二面角 的大小.

  【詳解】證明:(1)在圖1中, ,

  可得△AEF為等腰直角三角形,AE⊥EF.

  因?yàn)锳D∥BC,所以EF⊥BF,EF⊥FC.

  因?yàn)槠矫鍭BFE⊥平面EFCD,且兩平面交于EF,CF⊂平面CDEF,

  所以CF⊥平面ABFE.

  又EG⊂平面ABFE,故CF⊥EG;

  由G為中點(diǎn),可知四邊形AEFG為正方形,所以AF⊥EG;

  又AF∩FC=F,所以EG⊥平面AFC.又AC⊂平面AFC,所以AC⊥EG

  (2)由(1)知:FE,F(xiàn)C,F(xiàn)B兩兩垂直,如圖建立空間直角坐標(biāo)系F-xyz,

  設(shè)FE=1,則F(0,0,0),C(0,2,0),B(0,0,2),D(1,1,0).

  設(shè)H是線段BC上一點(diǎn), .

  因此點(diǎn) .

  由(1)知 為平面ABFE的法向量, =(0,2,0),

  因?yàn)?平面ABFE,所以 平面 ,當(dāng)且僅當(dāng) ,

  即 ,解得 .

  .

  (3)設(shè)A(1,0,1),E(1,0,0),G(0,0,1).

  由(1)可得, 是平面 的法向量, . ,

  設(shè)平面ACD的法向量為n=(x,y,z),

  由 即

  令x=1,則y=1,z=1.于是n=(1,1,1).

  所以 .

  所以二面角D-AC-F的大小為90°

  【點(diǎn)睛】本題主要考查線線垂直的證明,考查滿足線面平行的點(diǎn)是否存在的判斷與求法,考查二面角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.

  18.已知函數(shù)f(x)=axex-x2-2x.

  (1)當(dāng)a=1時,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;

  (2)當(dāng)x>0時,若曲線y=f(x)在直線y=-x的上方,求實(shí)數(shù)a的取值范圍.

  【答案】(1) ;(2)

  【解析】

  【分析】

  (1)根據(jù)題意,求出函數(shù)的導(dǎo)數(shù),由導(dǎo)數(shù)的幾何意義可得切線的斜率,求出切點(diǎn)的坐標(biāo),由直線的點(diǎn)斜式方程分析可得答案;(2)根據(jù)題意,原問題可以轉(zhuǎn)化為 恒成立,設(shè) ,求出 的導(dǎo)數(shù),由函數(shù)的導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系分析可得其最大值,分析可得答案.

  【詳解】(1)當(dāng) 時, ,其導(dǎo)數(shù) , .

  又因?yàn)?,

  所以曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為 ;

  (2)根據(jù)題意,當(dāng) 時,

  “曲線y=f(x)在直線 的上方”等價于“ 恒成立”,

  又由x>0,則 ,

  則原問題等價于 恒成立;

  設(shè) ,則 ,

  又由 ,則 ,則函數(shù) 在區(qū)間 上遞減,

  又由 ,則有 ,

  若 恒成立,必有 ,

  即的取值范圍為 .

  【點(diǎn)睛】本題考查利用導(dǎo)數(shù)分析函數(shù)的切線方程以及最值,考查恒成立問題,正確分離參數(shù)是關(guān)鍵,也是常用的一種手段.通過分離參數(shù)可轉(zhuǎn)化為 或 恒成立,即 或 即可,利用導(dǎo)數(shù)知識結(jié)合單調(diào)性求出 或 即得解,屬于中檔題.

  19.已知橢圓 過點(diǎn)P(2,1).

  (1)求橢圓C的方程,并求其離心率;

  (2)過點(diǎn)P作x軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對稱點(diǎn)為A',直線A'P與C交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說明理由.

  【答案】(1)見解析;(2)見解析

  【解析】

  【分析】

  (1)將點(diǎn) 代入橢圓方程,求出,結(jié)合離心率公式即可求得橢圓的離心率;(2)設(shè)直線 , ,設(shè)點(diǎn) 的坐標(biāo)為 , ,分別求出 , ,根據(jù)斜率公式,以及兩直線的位置關(guān)系與斜率的關(guān)系即可得結(jié)果.

  【詳解】(1)由橢圓方程橢圓 過點(diǎn)P(2,1),可得 .

  所以 ,

  所以橢圓C的方程為 + =1,離心率e= = ,

  (2)直線AB與直線OP平行.證明如下:

  設(shè)直線 , ,

  設(shè)點(diǎn)A的坐標(biāo)為(x1,y1),B(x2,y2),

  由 得 ,

  ∴ ,∴

  同理 ,所以 ,

  由 ,

  有 ,

  因?yàn)锳在第四象限,所以 ,且A不在直線OP上.

  ∴ ,

  又 ,故 ,

  所以直線 與直線 平行.

  【點(diǎn)睛】本題考查橢圓的簡單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,訓(xùn)練了斜率和直線平行的關(guān)系,是中檔題.

  20.對給定的d∈N*,記由數(shù)列構(gòu)成的集合 .

  (1)若數(shù)列{an}∈Ω(2),寫出a3的所有可能取值;

  (2)對于集合Ω(d),若d≥2.求證:存在整數(shù)k,使得對Ω(d)中的任意數(shù)列{an},整數(shù)k不是數(shù)列{an}中的項(xiàng);

  (3)已知數(shù)列{an},{bn}∈Ω(d),記{an},{bn}的前n項(xiàng)和分別為An,Bn.若|an+1|≤|bn+1|,求證:An≤Bn.

  【答案】(1)見解析;(2)見解析;(3)見解析

  【解析】

  【分析】

  (1)推導(dǎo)出 , , , ,由此能求出 的所有可能取值;(2)先應(yīng)用數(shù)學(xué)歸納法證明數(shù)列 ,則 具有 ,( )的形式,由此能證明取整數(shù) ,則整數(shù) 均不是數(shù)列 中的項(xiàng);(3)由 ,得: ,從而 ,由此利用累加法得 ,從而 ,同理 ,由此能證明 .

  【詳解】(1)由于數(shù)列{an}∈Ω(2),即d=2,a1=1.

  由已知有|a2|=|a1+d|=|1+2|=3,所以a2=±3,

  |a3|=|a2+d|=|a2+2|,

  將a2=±3代入得a3的所有可能取值為-5,-1,1,5.

  證明:(2)先應(yīng)用數(shù)學(xué)歸納法證明數(shù)列:

  若{an}∈Ω(d),則an具有md±1,(m∈Z)的形式.

 ?、佼?dāng)n=1時,a1=0•d+1,因此n=1時結(jié)論成立.

 ?、诩僭O(shè)當(dāng)n=k(k∈N*)時結(jié)論成立,即存在整數(shù)m0,使得ak=m0d0±1成立.

  當(dāng)n=k+1時,|an+1|=|m0d0±1+d0|=|(m0+1)d0±1|,

  ak+1=(m0+1)d±1,或ak+1=-(m0+1)±1,

  所以當(dāng)n=k+1時結(jié)論也成立.

  由①②可知,若數(shù)列{an}∈Ω(d)對任意n∈N*,an具有md±1(m∈Z)的形式.

  由于an具有md±1(m∈Z)的形式,以及d≥2,可得an不是d的整數(shù)倍.

  故取整數(shù)k=d,則整數(shù)k均不是數(shù)列{an}中的項(xiàng)

  (3)由|an+1|=|an+d|,可得: = ,

  所以有 = +2and+d2,

  = +2an-1d+d2,

  ,

  …

  = ,

  以上各式相加可得 ,

  即An= - ,同理Bn= - ,

  當(dāng) 時,有 ,

  ∵d∈N*,∴ ≤ ,

  ∴ ≤ - ,

  ∴

  【點(diǎn)睛】本題考查數(shù)列的第 項(xiàng)的所有可能取值的求法,考查數(shù)列不等式的證明,考查數(shù)學(xué)歸納法、不等式性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,是難題.

  高三數(shù)學(xué)上學(xué)期期末試卷理科

  一、選擇題:本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  1.若復(fù)數(shù)滿足 ,則 ( )

  A. 或 B. 或 C. 或 D.

  【答案】A

  【解析】

  【分析】

  設(shè)z=a+bi(a,b∈R),利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)相等的條件列式求得a,b,則答案可求.

  【詳解】設(shè)z=a+bi(a,b∈R),

  由z2=5+12i,得a2﹣b2+2abi=5+12i,

  ∴ ,解得 或 .

  ∴z=3+2i或z=﹣3﹣2i.

  故選:A.

  【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)相等的條件,是基礎(chǔ)題.

  2.函數(shù) 的零點(diǎn)所在的區(qū)間是( )

  A. B. C. D.

  【答案】B

  【解析】

  【分析】

  由于連續(xù)函數(shù)f(x)滿足 f(1)<0,f(2)>0,從而得到函數(shù)y=x﹣4•( )x的零點(diǎn)所在區(qū)間.

  【詳解】∵y=x﹣4•( )x為R上的連續(xù)函數(shù),

  且f(1)=1﹣2<0,f(2)=2﹣1>0,

  ∴f(1)•f(2)<0,

  故函數(shù)y=x﹣4•( )x的零點(diǎn)所在區(qū)間為:(1,2),

  故選:B.

  【點(diǎn)睛】本題主要考查函數(shù)的零點(diǎn)的定義,判斷函數(shù)的零點(diǎn)所在的區(qū)間的方法,屬于基礎(chǔ)題.

  3.已知 是兩條不同的直線, 是兩個不同的平面,則 的一個充分條件是( )

  A. , B. , ,

  C. , , D. , ,

  【答案】C

  【解析】

  【分析】

  在A中,a與b相交、平行或異面;在C中,由線面垂直的性質(zhì)可得a∥b;在B、D中,均可得a與b相交、平行或異面;

  【詳解】由a,b是兩條不同的直線,α,β是兩個不同的平面,

  在A中, , ,則a與b相交、平行或異面,故A錯誤;

  在B中, , , ,則a與b相交、平行或異面,故B錯誤;

  在C中,由a , ,則 ,又 ,由線面垂直的性質(zhì)可知 ,故C正確;

  在D中, , , ,則a與b相交、平行或異面,故D錯誤.

  故選:C.

  【點(diǎn)睛】本題考查線線平行的充分條件的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.

  4.定義運(yùn)算 ,則函數(shù) 的圖像是( )

  A. B.

  C. D.

  【答案】C

  【解析】

  【分析】

  根據(jù)新定義可得函數(shù)1⊕log2x就是取1與log2x中較大的一個即可判斷.

  【詳解】從定義運(yùn)算a⊕b 上看,對于任意的a、b,a⊕b實(shí)質(zhì)上是求a與b中最大的,

  ∴1⊕log2x就是取1與log2x中較大的一個,

  ∴對于對數(shù)函數(shù)y=log2x,當(dāng)x≥2,log2x≥1,∴當(dāng)0

  故選:C.

  【點(diǎn)睛】本題主要考查新定義,求函數(shù)的最大值,屬于基礎(chǔ)題.

  5. 的展開式中, 的系數(shù)是( )

  A. -160 B. -120 C. 40 D. 200

  【答案】B

  【解析】

  【分析】

  將問題轉(zhuǎn)化為二項(xiàng)式(1﹣2x)5的展開式的系數(shù)問題,求出(1﹣2x)5展開式的通項(xiàng),分別令r=2,3求出(1﹣2x)5(2+x)的展開式中x3項(xiàng)的系數(shù).

  【詳解】(1﹣2x)5(2+x)的展開式中x3項(xiàng)的系數(shù)是(1﹣2x)5展開式中x3項(xiàng)的系數(shù)的2倍與(1﹣2x)5展開式中x2項(xiàng)的系數(shù)的和

  ∵(1﹣2x)5展開式的通項(xiàng)為Tr+1=(﹣2)rC5rxr

  令r=3得到x3項(xiàng)的系數(shù)為﹣8C53=﹣80

  令r=2得到x2項(xiàng)的系數(shù)為4C52=40

  所以(1﹣2x)5(2+x)的展開式中x3項(xiàng)的系數(shù)是﹣80×2+40=﹣120

  故答案為:B

  【點(diǎn)睛】解決二項(xiàng)展開式的特定項(xiàng)問題常利用的工具是二項(xiàng)展開式的通項(xiàng)公式.求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略:(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第 項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可;(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第 項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).

  6.某幾何體的三視圖如圖所示,則該幾何體的體積是( )

  A. 36 B. 32 C. 30 D. 27

  【答案】A

  【解析】

  【分析】

  由已知中的三視圖,判斷該幾何體是一個四棱錐,四棱錐的底面是一個以3為邊長的長方形,高為4,分別求出棱錐各個面的面積,進(jìn)而可得答案.

  【詳解】由已知中的該幾何體是一個四棱錐的幾何體,

  四棱錐的底面為邊長為3和3的正方形,高為4,

  故S四棱錐 4×3+ 5×3 5×3 4×3+3×3=36.

  故選:A.

  【點(diǎn)睛】本題考查的知識點(diǎn)是由三視圖求表面積,其中根據(jù)三視圖判斷出幾何體的形狀,并找出各個面的棱長、高等關(guān)鍵的數(shù)據(jù)是解答本題的關(guān)鍵.

  7.若雙曲線 的一個焦點(diǎn)與拋物線 的焦點(diǎn)重合,則雙曲線 的離心率為( )

  A. 4 B. 3 C. 2 D.

  【答案】C

  【解析】

  【分析】

  先求出拋物線y2=8x的焦點(diǎn)坐標(biāo),由此得到雙曲線C: 1的一個焦點(diǎn),從而求出a的值,進(jìn)而得到該雙曲線的離心率.

  【詳解】∵拋物線y2=8x的焦點(diǎn)是(2,0),

  雙曲線C: 1的一個焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,

  ∴c=2,b2=3,m=1,

  ∴e 2.

  故選:C.

  【點(diǎn)睛】本題考查雙曲線的性質(zhì)和應(yīng)用,解題時要拋物線的性質(zhì)進(jìn)行求解.

  8.在 中,若 , ( ),則當(dāng) 最小時, ( )

  A. B. C. D.

  【答案】A

  【解析】

  【分析】

  由已知 可求 的坐標(biāo),然后結(jié)合向量數(shù)量積的坐標(biāo)表示及二次函數(shù)的性質(zhì)可求BC最小時的x,結(jié)合向量數(shù)量積的性質(zhì)即可求解.

  【詳解】∵ (1,2), (﹣x,2x)(x>0),

  ∴ (﹣x﹣1,2x﹣2),

  ∴| |

  令y=5x2﹣6x+5,x>0

  根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)x ,ymin ,此時BC最小,

  ∴ , ( , ),

  0,

  ∴ ,即C=90°,

  故選:A.

  【點(diǎn)睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查了二次函數(shù)的性質(zhì)的簡單應(yīng)用,考查運(yùn)算求解能力,是基礎(chǔ)題.

  9.已知函數(shù) ,且圖像在點(diǎn) 處的切線的傾斜角為 ,則 的值為( )

  A. B. C. D.

  【答案】D

  【解析】

  【分析】

  先對函數(shù)進(jìn)行求導(dǎo),求出f′(1),然后根據(jù)導(dǎo)數(shù)的幾何意義求出切線斜率

  k=f′(2)=tanα,然后根據(jù)誘導(dǎo)公式及同角基本關(guān)系可得sin( α)cos( α)=﹣cosαsinα ,代入可求.

  【詳解】∵f(x)=x3+2x2f′(1)+2,

  ∴f′(x)=3x2+4xf′(1),

  ∴f′(1)=3+4f′(1),

  即f′(1)=﹣1,f′(x)=3x2﹣4x,

  ∴圖象在點(diǎn)x=2處的切線的斜率k=f′(2)=4=tanα,

  則sin( α)cos( α)

  =﹣cosαsinα

  ,

  故選:D.

  【點(diǎn)睛】本題綜合考查了導(dǎo)數(shù)的幾何意義的應(yīng)用,誘導(dǎo)公式及同角基本關(guān)系的綜合應(yīng)用,屬于基礎(chǔ)知識的綜合應(yīng)用.

  10.已知 是 所在平面內(nèi)一點(diǎn), ,現(xiàn)將一粒紅豆隨機(jī)撒在 內(nèi),記紅豆落在 內(nèi)的概率為 ,落在 內(nèi)的概率為 , ,則 ( )

  A. B. C. D.

  【答案】D

  【解析】

  【分析】

  根據(jù)2 3 ,計(jì)算出△PAB,△PAC,△PBC面積的關(guān)系,求出概率,作積得答案.

  【詳解】如圖,令 , , .

  則P為△A1B1C1 的重心,

  ∴ ,

  而 , , .

  ∴2S△PAB=3S△PAC=6S△PBC,

  ∴ , , .

  則P△PBCP△PBAP△PAC .

  故選:D.

  【點(diǎn)睛】本題考查的知識點(diǎn)是幾何概型概率計(jì)算公式,計(jì)算出滿足條件和所有基本事件對應(yīng)的幾何量,是解答的關(guān)鍵,難度中檔.

  11.數(shù)列1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2, ,其相鄰的兩個1被2隔開,第 對1之間有 個2,則數(shù)列的前209項(xiàng)的和為( )

  A. 279 B. 289 C. 399 D. 409

  【答案】C

  【解析】

  【分析】

  根據(jù)題意,根據(jù)數(shù)列的性質(zhì),先把數(shù)列分組,每組中,第一個數(shù)為1,其他均為2,且第n組中,有n+1個數(shù);得到209是前19行的和,進(jìn)而得到所有項(xiàng)的和.

  【詳解】根據(jù)題意,先把數(shù)列分組,

  第一組為1,2,有2個數(shù),

  第二組為1,2,2,有3個數(shù),

  第三組為1,2,2,2,有4個數(shù),

  …

  第n組中,第一個數(shù)為1,其他均為2,有n+1個數(shù),即每組中,第一個數(shù)為1,其他均為2,則前n組共有 個數(shù),

  當(dāng)n=19時,恰好前19行有209個數(shù),

  前19行有19個1,有209-19=190個2,則這些數(shù)的和為:19+

  故答案為C.

  【點(diǎn)睛】本題考查數(shù)列的求和,注意要先根據(jù)數(shù)列的規(guī)律進(jìn)行分組,綜合運(yùn)用等差數(shù)列前n項(xiàng)和公式與分組求和的方法,進(jìn)行求和.

  12.已知 且 ,則下列結(jié)論正確的是( )

  A. B. C. D.

  【答案】A

  【解析】

  【分析】

  將式子變形得到 ,因?yàn)橛嘞液瘮?shù)是偶函數(shù),故 ,構(gòu)造函數(shù) ,通過求導(dǎo)得到函數(shù)的單調(diào)性,進(jìn)而得到結(jié)果.

  【詳解】 等價于 ,即 ,因?yàn)橛嘞液瘮?shù)是偶函數(shù),故 ,構(gòu)造函數(shù) ,根據(jù)偶函數(shù)的定義f(x)=f(-x)得到函數(shù)是偶函數(shù),而f(x)在 上, ,故函數(shù)單調(diào)增,又因?yàn)?,故得到 .

  故答案為:A.

  【點(diǎn)睛】這個題目考查了函數(shù)奇偶性的應(yīng)用,以及函數(shù)的單調(diào)性的應(yīng)用,通過研究函數(shù)的這些性質(zhì)來比較函數(shù)的大小;比較大小常用的方法,除構(gòu)造函數(shù),研究函數(shù)性質(zhì)得到結(jié)果,常用的有:做差和0比,做商和1比,不等式性質(zhì)的應(yīng)用等.

  二、填空題(每題5分,滿分20分,將答案填在答題紙上)

  13.已知集合 , ,則 __________.(用區(qū)間表示)

  【答案】(-1,0)

  【解析】

  【分析】

  化簡集合N,根據(jù)補(bǔ)集與交集的定義寫出.

  【詳解】M={x|﹣1

  則?MN=(﹣1,0),

  故答案為:(﹣1,0).

  【點(diǎn)睛】本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題.

  14.元朝著名數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩:“我有一壺酒,攜著游春走,遇店添一倍,逢友飲一斗,店友經(jīng)三處,沒了壺中酒,借問此壺中,當(dāng)原多少酒?”用程序框圖表達(dá)如圖所示,若最終輸出的x=0,則開始時輸入的x的值為____________

  【答案】

  【解析】

  【分析】

  求出對應(yīng)的函數(shù)關(guān)系,由題輸出的結(jié)果的值為0,由此關(guān)系建立方程求出自變量的值即可.

  【詳解】第一次輸入x=x,i=1

  執(zhí)行循環(huán)體,x=2x﹣1,i=2,

  執(zhí)行循環(huán)體,x=2(2x﹣1)﹣1=4x﹣3,i=3,

  執(zhí)行循環(huán)體,x=2(4x﹣3)﹣1=8x﹣7,i=4>3,

  輸出8x﹣7的值為0,解得:x ,

  故答案為: .

  【點(diǎn)睛】解答本題,關(guān)鍵是根據(jù)所給的框圖,得出函數(shù)關(guān)系,然后通過解方程求得輸入的值.本題是算法框圖考試常見的題型,其作題步驟是識圖得出函數(shù)關(guān)系,由此函數(shù)關(guān)系解題,得出答案.

  15.設(shè)實(shí)數(shù) 滿足 ,若 的最大值為16,則實(shí)數(shù) __________.

  【答案】3

  【解析】

  【分析】

  先畫出可行域,得到角點(diǎn)坐標(biāo).再對k進(jìn)行分類討論,通過平移直線z=kx+y得到最大值點(diǎn)A,即可得到答案.

  【詳解】實(shí)數(shù)x,y滿足 的可行域如圖:

  得:A(4,4),

  同樣地,得B(0,2),

  z=kx+y,即y=﹣kx+z,分k>0,k<0兩種情況.

  當(dāng)k>0時,

  目標(biāo)函數(shù)z=kx+y在A點(diǎn)取最大值,即直線z=kx+y在y軸上的截距z最大,即16=4k+4,得k=3;

  當(dāng)k<0時,

  ①當(dāng)k 時,目標(biāo)函數(shù)z=kx+y在A點(diǎn)(4,4)時取最大值,

  即直線z=kx+y在y軸上的截距z最大,

  此時,16=4k+4,

  故k=3.

 ?、诋?dāng)k 時,目標(biāo)函數(shù)z=kx+y在B點(diǎn)(0,2)時取最大值,

  即直線z=kx+y在y軸上的截距z最大,

  此時,16=0×k+2,

  故k不存在.

  綜上,k=3.

  故答案為:3.

  【點(diǎn)睛】本題主要考查簡單線性規(guī)劃.解決此類問題的關(guān)鍵是正確畫出不等式組表示的可行域,將目標(biāo)函數(shù)賦予幾何意義.

  16.已知過橢圓 上一點(diǎn) 的切線方程為 ,若分別交 軸于 兩點(diǎn),則當(dāng) 最小時, __________.( 為坐標(biāo)原點(diǎn))

  【答案】

  【解析】

  【分析】

  利用切線求得A、B兩點(diǎn)坐標(biāo),表示出 ,再利用 ,結(jié)合基本不等式求得 ,再利用 最小時的條件求得 , ,即可求解.

  【詳解】因?yàn)辄c(diǎn) 的切線方程為 ,若分別交 軸于 兩點(diǎn),所以A( ,0),B(0, ), = = ,

  又 點(diǎn)P 在橢圓 上, 有 ,

  = + ) ,當(dāng)且僅當(dāng) = 時等號成立, ,

  解得 , , = = ,

  = .

  故答案為 .

  【點(diǎn)睛】本題以過橢圓上點(diǎn)的切線為載體,考查了利用基本不等式求最值及等號成立的條件,考查了邏輯推理及運(yùn)算能力,屬于難題.

  三、解答題 (本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)

  17.在 中, 分別是內(nèi)角 的對邊,且 .

  (1)求 ;

  (2)若 , ,求 的面積.

  【答案】(1) (2)

  【解析】

  【分析】

  (1)由已知利用正弦定理可得:a2=b2+c2+bc.由余弦定理可得:cosA ,結(jié)合范圍A∈(0,π),可求A .

  (2)由已知利用余弦定理c2+2c﹣5=0,解得c的值,利用三角形面積公式即可計(jì)算得解.

  【詳解】(1)因?yàn)?,

  由正弦定理得 .

  再由余弦定理得 ,

  又因?yàn)?,所以 .

  (2)因?yàn)閍=3, ,

  代入 得 ,

  解得 .

  故△ABC的面積 .

  【點(diǎn)睛】本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

  18.設(shè) , , ,數(shù)列 的前 項(xiàng)和 ,點(diǎn) ( )均在函數(shù) 的圖像上.

  (1)求數(shù)列 的通項(xiàng)公式;

  (2)設(shè) , 是數(shù)列 的前 項(xiàng)和,求滿足 ( )的最大正整數(shù) .

  【答案】(1)an=6n-5 ( ) (2)8

  【解析】

  【分析】

  (1)根據(jù)f(x)=3x2﹣2x,由(n,Sn)在y=3x2﹣2x上,知Sn=3n2﹣2n.由此能求出數(shù)列{an}的通項(xiàng)公式.

  (2)由 ,知Tn (1- ),根據(jù) ( )對 恒成立,當(dāng)且僅當(dāng) ,由此能求出所有n∈N*都成立的m的范圍.

  【詳解】(1)因?yàn)?=3x2-2x.

  又因?yàn)辄c(diǎn) 均在函數(shù) 的圖像上,所以 =3n2-2n.

  當(dāng)n≥2時,an=Sn-Sn-1=(3n2-2n)- =6n-5.

  當(dāng)n=1時,a1=S1=3×12-2=1,所以,an=6n-5 ( ).

  (2)由(1)得知 = ,

  故Tn= =

  = (1- ),且Tn隨著n的增大而增大

  因此,要使 (1- ) ( )對 恒成立,當(dāng)且僅當(dāng)n=1時T1= ,

  即m<9,所以滿足要求的最大正整數(shù)m為8.

  【點(diǎn)睛】本題考查數(shù)列與不等式的綜合,綜合性強(qiáng),難度較大.易錯點(diǎn)是基礎(chǔ)知識不牢固,不會運(yùn)用數(shù)列知識進(jìn)行等價轉(zhuǎn)化轉(zhuǎn)化.解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.

  19.如圖,正三棱柱 中,(底面為正三角形,側(cè)棱垂直于底面),側(cè)棱長 ,底面邊長 , 是 的中點(diǎn).

  (1)求證:平面 平面 ;

  (2)設(shè) 是線段 的中點(diǎn),求直線 與平面 所成的角的正弦值.

  【答案】(1) 見解析(2)

  【解析】

  【分析】

  (1)通過做平行線構(gòu)造平行四邊形,進(jìn)而得到線面垂直,再由平形四邊行的對邊平行的性質(zhì)得到平面 內(nèi)的線垂直于平面 內(nèi)的線,進(jìn)而得到面面垂直;(2)建立空間坐標(biāo)系,求直線 的方向向量和面 的法向量,進(jìn)而得到線面角.

  【詳解】(1)證明:取 中點(diǎn) , 的中點(diǎn)為M,連結(jié) ,MN,則有 ∥ 且 = ∴四邊形 為平行四邊形, ∥

  ∵ 面 ,

  ∴ ,又

  ∴ 平面 故 ⊥平面 .

  所以平面 平面

  (2)如圖建立空間直角坐標(biāo)系,則B(- ,0,0),A( ,0,0),

  因?yàn)?是線段 的中點(diǎn),所以M

  所以

  設(shè) 是平面 的一個法向量,因?yàn)?/p>

  所以,由

  所以可取

  【點(diǎn)睛】這個題目考查了面面垂直的證明,以及線面角的求法,求線面角,一是可以利用等體積計(jì)算出直線的端點(diǎn)到面的距離,除以線段長度就是線面角的正弦值;還可以建系,用空間向量的方法求直線的方向向量和面的法向量,再求線面角即可。

  20.為了積極支持雄安新區(qū)建設(shè),某投資公司計(jì)劃明年投資1000萬元給雄安新區(qū)甲、乙兩家科技企業(yè),以支持其創(chuàng)新研發(fā)計(jì)劃,經(jīng)有關(guān)部門測算,若不受中美貿(mào)易戰(zhàn)影響的話,每投入100萬元資金,在甲企業(yè)可獲利150萬元,若遭受貿(mào)易戰(zhàn)影響的話,則將損失50萬元;同樣的情況,在乙企業(yè)可獲利100萬元,否則將損失20萬元,假設(shè)甲、乙兩企業(yè)遭受貿(mào)易戰(zhàn)影響的概率分別為0.6和0.5.

  (1)若在甲、乙兩企業(yè)分別投資500萬元,求獲利1250萬元的概率;

  (2)若在兩企業(yè)的投資額相差不超過300萬元,求該投資公司明年獲利約在什么范圍內(nèi)?

  【答案】(1)0.2 (2)其獲利區(qū)間范圍為335與365萬元之間

  【解析】

  【分析】

  (1)由已知條件可知,在甲、乙兩公司分別投資500萬元的情況下欲獲利1250萬元,須且必須兩公司均不遭受貿(mào)易戰(zhàn)的影響,故可列出式子即可;(2)先求得投資100萬元在甲公司獲利的期望30萬,乙為40萬,設(shè)在甲、乙兩公司的投資分別為x,(1000-x)萬元,則平均獲利z=0.3x+0.4(1000-x)=400-0.1x萬元,根據(jù)x的范圍可得到z的范圍.

  【詳解】(1)由已知條件可知,在甲、乙兩公司分別投資500萬元的情況下欲獲利1250萬元,須且必須兩公司均不遭受貿(mào)易戰(zhàn)的影響.

  故所求的概率為P=(1-0.6)×(1-0.5)=0.2.

  (2)設(shè)投資100萬元在甲公司獲利萬元,則的可能取值為150和-50萬元.

  又甲公司遭受貿(mào)易戰(zhàn)影響的概率為0.6

  故投資100萬元在甲公司獲利的期望為150×0.4+(-50)×0.6=30萬元.

  同理在乙公司獲利的期望為100×0.5+(-20)×0.5=40萬元.

  設(shè)在甲、乙兩公司的投資分別為x,(1000-x)萬元,則平均獲利

  z=0.3x+0.4(1000-x)=400-0.1x萬元(其中 ).

  由于上述函數(shù)為減函數(shù),所以其獲利區(qū)間范圍為335與365萬元之間.

  【點(diǎn)睛】這個題目考查了互相獨(dú)立事件的概率的求法,以及離散型隨機(jī)變量的均值的求法,即期望的求法;其中互相獨(dú)立事件A和B,P(AB)=P(A)P(B).

  21.設(shè)點(diǎn) 在以 , 為焦點(diǎn)的橢圓 上.

  (1)求橢圓 的方程;

  (2)經(jīng)過 作直線 交 于兩點(diǎn) ,交 軸于 點(diǎn),若 , ,且 ,求 與 .

  【答案】(1) (2)

  【解析】

  【分析】

  (1)根據(jù)橢圓的定義得到2a值,由題干得到c=2,進(jìn)而得到方程;(2)設(shè)出A、B、M點(diǎn)的坐標(biāo),根據(jù)向量關(guān)系得到A點(diǎn)坐標(biāo) , ,代入橢圓方程得到關(guān)于 的方程,同理得到關(guān)于 的方程,進(jìn)而抽出 、 是方程 的兩個根,解出即可得到 與 .

  【詳解】(1)因?yàn)辄c(diǎn)P 在以 為焦點(diǎn)的橢圓C 上,所以

  所以 .

  又因?yàn)閏=2,所以

  所以橢圓C的方程為

  (2)設(shè)A、B、M點(diǎn)的坐標(biāo)分別為A( , ),B( , ),M(0, ).

  ∵ 2, ∴ ( , )

  ∴ ,

  將A點(diǎn)坐標(biāo)代入到橢圓方程中,得 .

  去分母整理得 :

  同理,由 2可得:

  ∴ 、 是方程 的兩個根,

  ∴ ,又

  二者聯(lián)立解得

  或所以 又 ,所以

  所以上述方程即為

  所以

  【點(diǎn)睛】這個題目考查了橢圓的方程的求法,還考查了向量在圓錐曲線中的應(yīng)用,一般采用的是向量坐標(biāo)化,得到點(diǎn)坐標(biāo)間的關(guān)系,再通過題干列出相應(yīng)的方程進(jìn)行分析即可.

  22.已知函數(shù) .

  (1)若 ,求函數(shù) 的單調(diào)區(qū)間;

  (2)若函數(shù) 在區(qū)間 上不單調(diào),求實(shí)數(shù) 的取值范圍;

  (3)求證: 或 是函數(shù) 在 上有三個不同零點(diǎn)的必要不充分條件.

  【答案】(1)函數(shù) 的單調(diào)遞增區(qū)間為 ,沒有單調(diào)遞減區(qū)間. (2) (3)見解析

  【解析】

  【分析】

  (1)將參數(shù)值k代入解析式,對函數(shù)求導(dǎo),得到導(dǎo)函數(shù)大于0,進(jìn)而得到函數(shù)只有增區(qū)間沒有減區(qū)間;(2)對函數(shù)求導(dǎo), 在區(qū)間 上不單調(diào)所以 在 上有實(shí)數(shù)解,且無重根,變量分離即方程 有解,通過換元得到新函數(shù)的單調(diào)性,對方程的根進(jìn)行討論即可;(3)證明: 或 則函數(shù) 在 上不能有三個不同零點(diǎn),證明,函數(shù)有3個不同零點(diǎn)則 或 即可.

  【詳解】(1)若k=-1,則 ,所以

  由于△=16-48<0,

  所以函數(shù) 的單調(diào)遞增區(qū)間為 ,沒有單調(diào)遞減區(qū)間.

  (2)因

  ,因 在區(qū)間 上不單調(diào),

  所以 在 上有實(shí)數(shù)解,且無重根,

  由 得

  令 有 ,記 則 ,

  所以在 上,h(t)單調(diào)遞減,在 上, h(t)單調(diào)遞增,

  所以有 ,于是得

  而當(dāng) 時有 在 上有兩個相等的實(shí)根 ,故舍去

  所以 .

  (3)因?yàn)?/p>

  所以,當(dāng)△= ,即 時

  函數(shù) 在R上單調(diào)遞增

  故 在R上不可能有三個不同零點(diǎn)

  所以,若 在R上有三個不同零點(diǎn),則必有△ ,

  即 是 在R上有三個不同零點(diǎn)的必要條件.

  而當(dāng) , 時,滿足

  但

  即此時 只有兩個不同零點(diǎn)

  同樣,當(dāng) 時,滿足 ,

  但

  即此時 也只有兩個不同零點(diǎn)

  故k<-2或k>7是 在R上有三個不同零點(diǎn)的必要不充分條件.

  【點(diǎn)睛】本題中涉及根據(jù)函數(shù)零點(diǎn)求參數(shù)取值,是高考經(jīng)常涉及的重點(diǎn)問題,(1)利用零點(diǎn)存在的判定定理構(gòu)建不等式求解;(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解,如果涉及由幾個零點(diǎn)時,還需考慮函數(shù)的圖象與參數(shù)的交點(diǎn)個數(shù);(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.

  高三理科數(shù)學(xué)上學(xué)期期末試卷

  第Ⅰ卷(共60分)

  一、選擇題:本大題共12個小題,每小題5分,共60分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  1.設(shè)全集為 ,集合 , ,則 ( )

  A. B.

  C. D.

  【答案】B

  【解析】

  【分析】

  先化簡B,再根據(jù)補(bǔ)集、交集的定義即可求出.

  【詳解】∵A={x|0

  ∴?RB={x|x<1},

  ∴A∩(?RB)={x|0

  故選:B.

  【點(diǎn)睛】本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題目.

  2.下面是關(guān)于復(fù)數(shù) 的四個命題:

  ; ; 的虛部為2; 的共軛復(fù)數(shù)為 .

  其中真命題為( )

  A. B. C. D.

  【答案】A

  【解析】

  【分析】

  先將復(fù)數(shù)化簡運(yùn)算,可得|z|及 和共軛復(fù)數(shù),再依次判斷命題的真假.

  【詳解】復(fù)數(shù)z 2+2i.可得|z|=2 ,所以p1:|z|=2;不正確;

  z2=(2+2i)2=8i,所以p2:z2=8i;正確;

  z=2+2i.z的虛部為2;可得p3:z的虛部為2;正確;

  z=2+2i的共軛復(fù)數(shù)為:2﹣2i;所以p4:z的共軛復(fù)數(shù)為﹣2﹣2i不正確;

  故選:A.

  【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算法則以及命題的真假的判斷與應(yīng)用,是對基本知識的考查.

  3.已知某產(chǎn)品連續(xù)4個月的廣告費(fèi) (千元)與銷售額 (萬元)( )滿足 , ,若廣告費(fèi)用 和銷售額 之間具有線性相關(guān)關(guān)系,且回歸直線方程為 , ,那么廣告費(fèi)用為5千元時,可預(yù)測的銷售額為( )萬元

  A. 3 B. 3.15 C. 3.5 D. 3.75

  【答案】D

  【解析】

  【分析】

  求出樣本中心點(diǎn)代入回歸直線方程,可得a,再將x=6代入,即可得出結(jié)論.

  【詳解】由題意, , ,

  代入 0.6x+a,可得3=0.6×3.75+a,

  所以a=0.75,

  所以 0.6x+0.75,

  所以x=5時, 0.6×5+0.75=3.75,

  故選:D.

  【點(diǎn)睛】本題考查線性回歸方程,考查學(xué)生的計(jì)算能力,利用回歸方程恒過樣本中心點(diǎn)是關(guān)鍵.

  4.已知數(shù)列 為等差數(shù)列,且 成等比數(shù)列,則 的前6項(xiàng)的和為( )

  A. 15 B. C. 6 D. 3

  【答案】C

  【解析】

  【分析】

  利用 成等比數(shù)列,得到方程2a1+5d=2,將其整體代入 {an}前6項(xiàng)的和公式中即可求出結(jié)果.

  【詳解】∵數(shù)列 為等差數(shù)列,且 成等比數(shù)列,∴ ,1, 成等差數(shù)列,

  ∴2 ,

  ∴2=a1+a1+5d,

  解得2a1+5d=2,

  ∴{an}前6項(xiàng)的和為 2a1+5d)= .

  故選:C.

  【點(diǎn)睛】本題考查等差數(shù)列前n項(xiàng)和的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列、等比數(shù)列的性質(zhì)的合理運(yùn)用.

  5.已知定義在 的奇函數(shù) 滿足 ,當(dāng) 時, ,則 ( )

  A. B. 1 C. 0 D. -1

  【答案】D

  【解析】

  【分析】

  根據(jù)題意,分析可得f(x+4)=﹣f(x+2)=f(x),即函數(shù)是周期為4的周期函數(shù),可得f(2019)=f(﹣1+2020)=f(﹣1),結(jié)合函數(shù)的奇偶性與解析式分析可得答案.

  【詳解】根據(jù)題意,函數(shù)f(x)滿足f(x+2)=﹣f(x),則有f(x+4)=﹣f(x+2)=f(x),即函數(shù)是周期為4的周期函數(shù),

  則f(2019)=f(﹣1+2020)=f(﹣1),

  又由函數(shù)為奇函數(shù),則f(﹣1)=﹣f(1)=﹣(1)2=﹣1;

  則f(2019)=﹣1;

  故選:D.

  【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性的應(yīng)用,注意分析函數(shù)的周期.

  6.設(shè) 且 ,則 是 的( )

  A. 充分不必要條件 B. 必要不充分條件

  C. 充要條件 D. 既不充分也不必要

  【答案】D

  【解析】

  【分析】

  由題意看命題“ab>1”與“ ”能否互推,然后根據(jù)必要條件、充分條件和充要條件的定義進(jìn)行判斷.

  【詳解】若“ab>1”當(dāng)a=﹣2,b=﹣1時,不能得到“ ”,

  若“ ”,例如當(dāng)a=1,b=﹣1時,不能得到“ab>1“,

  故“ab>1”是“ ”的既不充分也不必要條件,

  故選:D.

  【點(diǎn)睛】本小題主要考查了充分必要條件,考查了對不等關(guān)系的分析,屬于基礎(chǔ)題.

  7.設(shè) , , ,若 ,則與的夾角為( )

  A. B. C. D.

  【答案】A

  【解析】

  【分析】

  由向量的坐標(biāo)運(yùn)算得: (0, ),由數(shù)量積表示兩個向量的夾角得:cosθ , 可得結(jié)果.

  【詳解】由 (1, ), (1,0), .

  則 (1+k, ),

  由 ,

  則 0,

  即k+1=0,即k=﹣1,即 (0, ),

  設(shè) 與 的夾角為θ,

  則cosθ ,

  又θ∈[0,π],

  所以 ,

  故選:A.

  【點(diǎn)睛】本題考查了數(shù)量積表示兩個向量的夾角、及向量的坐標(biāo)運(yùn)算,屬于簡單題

  8.第24屆國際數(shù)學(xué)家大會會標(biāo)是以我國古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計(jì)的,會標(biāo)是四個全等的直角三角形與一個小正方形拼成的一個大正方形,如果小正方形的面積為 ,大正方形的面積為 ,直角三角形中較小的銳角為,則 ( )

  A. B. C. D.

  【答案】D

  【解析】

  【分析】

  由圖形可知三角形的直角邊長度差為a,面積為6 ,列方程組求出直角邊得出sinθ,代入所求即可得出答案.

  【詳解】由題意可知小正方形的邊長為a,大正方形邊長為5a,直角三角形的面積為 6 ,

  設(shè)直角三角形的直角邊分別為x,y且x

  ∴直角三角形的面積為S xy=6 ,

  聯(lián)立方程組可得x=3a,y=4a,

  ∴sinθ ,tanθ= .

  ∴ = = = ,

  故選:D.

  【點(diǎn)睛】本題考查了解直角三角形,三角恒等變換,屬于基礎(chǔ)題.

  9.如圖所示,正方形的四個頂點(diǎn) , , , ,及拋物線 和 ,若將一個質(zhì)點(diǎn)隨機(jī)投入正方形 中,則質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是( )

  A. B. C. D.

  【答案】B

  【解析】

  【分析】

  利用幾何槪型的概率公式,求出對應(yīng)的圖形的面積,利用面積比即可得到結(jié)論.

  【詳解】∵A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1),

  ∴正方體的ABCD的面積S=2×2=4,

  根據(jù)積分的幾何意義以及拋物線的對稱性可知陰影部分的面積:

  S=2 [1﹣ ]dx=2( x3) 2[(1 )﹣0]=2 ,

  則由幾何槪型的概率公式可得質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是 .

  故選:B.

  【點(diǎn)睛】本題主要考查幾何槪型的概率的計(jì)算,利用積分求出陰影部分的面積是解決本題的關(guān)鍵.

  10.如果 是拋物線 上的點(diǎn),它們的橫坐標(biāo) , 是拋物線 的焦點(diǎn),若 ,則 ( )

  A. 2028 B. 2038 C. 4046 D. 4056

  【答案】B

  【解析】

  【分析】

  由拋物線性質(zhì)得|PnF| xn+1,由此能求出結(jié)果.

  【詳解】∵P1,P2,…,Pn是拋物線C:y2=4x上的點(diǎn),

  它們的橫坐標(biāo)依次為x1,x2,…,xn,F(xiàn)是拋物線C的焦點(diǎn),

  ,

  ∴

  =(x1+1)+(x2+1)+…+(x2018+1)

  =x1+x2+…+x2018+2018

  =2018+20=2038.

  故選:B.

  【點(diǎn)睛】本題考查拋物線中一組焦半徑和的求法,是中檔題,解題時要認(rèn)真審題,注意拋物線的性質(zhì)的合理運(yùn)用.

  11.已知函數(shù) ,記 ,若 存在3個零點(diǎn),則實(shí)數(shù)的取值范圍是( )

  A. B.

  C. D.

  【答案】C

  【解析】

  【分析】

  由g(x)=0得f(x)=ex+a,分別作出兩個函數(shù)的圖象,根據(jù)圖象交點(diǎn)個數(shù)與函數(shù)零點(diǎn)之間的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.

  【詳解】由g(x)=0得f(x)=ex+a,

  作出函數(shù)f(x)和y=ex+a的圖象如圖:

  當(dāng)直線y=ex+a過A 點(diǎn)時,截距a= ,此時兩個函數(shù)的圖象有2個交點(diǎn),

  將直線y=ex+a向上平移到過B(1,0)時,截距a=-e,兩個函數(shù)的圖象有2個交點(diǎn),

  在平移過程中直線y=ex+a與函數(shù)f(x)圖像有三個交點(diǎn),

  即函數(shù)g(x)存在3個零點(diǎn),

  故實(shí)數(shù)a的取值范圍是 ,

  故選:C.

  【點(diǎn)睛】本題主要考查分段函數(shù)的應(yīng)用,考查了函數(shù)零點(diǎn)問題,利用函數(shù)與零點(diǎn)之間的關(guān)系轉(zhuǎn)化為兩個函數(shù)的圖象的交點(diǎn)問題是解決本題的關(guān)鍵,屬于中檔題.

  12.設(shè) 是雙曲線 的左右焦點(diǎn), 是坐標(biāo)原點(diǎn),過 的一條直線與雙曲線 和 軸分別交于 兩點(diǎn),若 , ,則雙曲線 的離心率為( )

  A. B. C. D.

  【答案】D

  【解析】

  【分析】

  由條件得到 = ,連接A ,在三角形 中,由余弦定理可得A ,

  再由雙曲線定義A =2a,可得.

  【詳解】∵ ,得到| ,∴ = ,又 ,連接A , ,在三角形 中,由余弦定理可得A ,

  又由雙曲線定義A =2a,可得 ,∴ = ,

  故選D.

  【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用及離心率的求法,綜合考查了三角形中余弦定理的應(yīng)用,屬于中檔題.

  第Ⅱ卷(共90分)

  二、填空題(每題5分,滿分20分,將答案填在答題紙上)

  13.若 滿足約束條件 ,則 的最大值為____.

  【答案】5

  【解析】

  【分析】

  畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,轉(zhuǎn)化求解目標(biāo)函數(shù)的最值即可.

  【詳解】x,y滿足約束條件 的可行域如圖:

  由 解得A(1,2).

  由可行域可知:目標(biāo)函數(shù)經(jīng)過可行域A時,

  z=x+2y取得最大值:5.

  故答案為:5.

  【點(diǎn)睛】本題考查線性規(guī)劃的簡單應(yīng)用,目標(biāo)函數(shù)的幾何意義是解題的關(guān)鍵,考查計(jì)算能力.

  14.設(shè) ,則 的值為__________.

  【答案】1

  【解析】

  【分析】

  分別令x=0和x=-1,即可得到所求.

  【詳解】由條件 ,令x=0,則有 =0,再令x=-1,則有-1= ,∴ ,

  故答案為1.

  【點(diǎn)睛】本題考查二項(xiàng)式定理的系數(shù)問題,利用賦值法是解決問題的關(guān)鍵,屬于中檔題.

  15.在平面直角坐標(biāo)系 中,已知過點(diǎn) 的直線與圓 相切,且與直線 垂直,則實(shí)數(shù) __________.

  【答案】

  【解析】

  因?yàn)?在圓 上,所以圓心與切點(diǎn) 的連線與切線垂直,又知與直線與直線 垂直,所以圓心與切點(diǎn) 的連線與直線 斜率相等, ,所以 ,故填: .

  16.已知函數(shù) ,過點(diǎn) 作與 軸平行的直線交函數(shù) 的圖像于點(diǎn) ,過點(diǎn) 作 圖像的切線交 軸于點(diǎn) ,則 面積的最小值為____.

  【答案】

  【解析】

  【分析】

  求出f(x)的導(dǎo)數(shù),令x=a,求得P的坐標(biāo),可得切線的斜率,運(yùn)用點(diǎn)斜式方程可得切線的方程,令y=0,可得B的坐標(biāo),再由三角形的面積公式可得△ABP面積S,求出導(dǎo)數(shù),利用導(dǎo)數(shù)求最值,即可得到所求值.

  【詳解】函數(shù)f(x)= 的導(dǎo)數(shù)為f′(x) ,

  由題意可令x=a,解得y ,

  可得P(a, ),

  即有切線的斜率為k ,

  切線的方程為y﹣ (x ),

  令y=0,可得x=a﹣1,

  即B( a﹣1,0),

  在直角三角形PAB中,|AB|=1,|AP| ,

  則△ABP面積為S(a) |AB|•|AP| • ,a>0,

  導(dǎo)數(shù)S′(a) • ,

  當(dāng)a>1時,S′>0,S(a)遞增;當(dāng)0

  即有a=1處S取得極小值,且為最小值 e.

  故答案為: e.

  【點(diǎn)睛】本題考查導(dǎo)數(shù)的運(yùn)用:求切線的方程和單調(diào)區(qū)間、極值和最值,注意運(yùn)用直線方程和構(gòu)造函數(shù)法,考查運(yùn)算能力,屬于中檔題.

  三、解答題 (本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)

  17.已知函數(shù) 的最小正周期為 ,將函數(shù) 的圖像向右平移 個單位長度,再向下平移 個單位長度,得到函數(shù) 的圖像.

  (1)求函數(shù) 的單調(diào)遞增區(qū)間;

  (2)在銳角 中,角 的對邊分別為 ,若 , ,求 面積的最大值.

  【答案】(1) (2)

  【解析】

  【分析】

  (1)利用三角恒等變換化簡函數(shù)f(x)的解析式,再根據(jù)正弦函數(shù)的單調(diào)求得函數(shù)f(x)的單調(diào)遞增區(qū)間.

  (2)先利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,在銳角△ABC中,由g( )=0,求得A的值,再利用余弦定理、基本不等式,求得bc的最大值,可得△ABC面積的最大值.

  【詳解】(1)由題得:函數(shù)

  =

  =

  ,

  由它的最小正周期為 ,得 ,

  ∴

  由 ,得

  故函數(shù) 的單調(diào)遞增區(qū)間是

  (2)將函數(shù) 的圖像向右平移 個單位長度,再向下平移 個單位長度,得到函數(shù) 的圖像,

  在銳角 中,角 的對邊分別為 ,

  若 ,可得 ,∴ .

  因?yàn)?,由余弦定理,得 ,

  ∴ ,

  ∴ ,當(dāng)且僅當(dāng) 時取得等號.

  ∴ 面積 ,

  故 面積的最大值為

  【點(diǎn)睛】本題主要考查三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的單調(diào)性,余弦定理、基本不等式的應(yīng)用,屬于中檔題.

  18.設(shè) 是等差數(shù)列,前 項(xiàng)和為 , 是等比數(shù)列,已知 , , , .

  (1)求數(shù)列 和數(shù)列 的通項(xiàng)公式;

  (2)設(shè) ,記 ,求 .

  【答案】(1) , ;(2)

  【解析】

  【分析】

  (1)設(shè)數(shù)列 的公差為 等比數(shù)列{bn}的公比為q,由已知列式求得d,q及首項(xiàng),則可求數(shù)列 和{bn}的通項(xiàng)公式;

  (2)由(1)知, ,利用錯位相減直接求和.

  【詳解】(1)設(shè)數(shù)列 的公差為 ,等比數(shù)列 的公比為

  由已知得: ,即 ,

  又 ,所以 ,

  所以

  由于 ,

  ,

  所以 ,即 ( 不符合題意,舍去)

  所以 ,

  所以 和 的通項(xiàng)公式分別為 , .

  (2)由(1)知, ,

  所以

  所以

  上述兩式相減,得:

  =

  = ,

  得 .

  【點(diǎn)睛】本題主要考查等差數(shù)列、等比數(shù)列的通項(xiàng)公式及前n項(xiàng)和等基礎(chǔ)知識,考查數(shù)列求和的基本方法及運(yùn)算能力,是中檔題.

  19.已知橢圓 ,點(diǎn) 在橢圓 上,橢圓 的離心率是 .

  (1)求橢圓 的標(biāo)準(zhǔn)方程;

  (2)設(shè)點(diǎn) 為橢圓長軸的左端點(diǎn), 為橢圓上異于橢圓 長軸端點(diǎn)的兩點(diǎn),記直線 斜率分別為 ,若 ,請判斷直線 是否過定點(diǎn)?若過定點(diǎn),求該定點(diǎn)坐標(biāo),若不過定點(diǎn),請說明理由.

  【答案】(1) (2)過定點(diǎn)

  【解析】

  【分析】

  (1)由點(diǎn)M(﹣1, )在橢圓C上,且橢圓C的離心率是 ,列方程組求出a=2,b ,由此能求出橢圓C的標(biāo)準(zhǔn)方程.

  (2)設(shè)點(diǎn)P,Q的坐標(biāo)分別為(x1,y1),(x2,y2),當(dāng)直線PQ的斜率存在時,設(shè)直線PQ的方程為y=kx+m,聯(lián)立 ,得:(4k2+3)x2+8kmx+(4m2﹣12)=0,利用根的判別式、韋達(dá)定理,結(jié)合已知條件得直線PQ的方程過定點(diǎn)(1,0);再驗(yàn)證直線PQ的斜率不存在時,同樣推導(dǎo)出x0=1,從而直線PQ過(1,0).由此能求出直線PQ過定點(diǎn)(1,0).

  【詳解】(1)由點(diǎn) 在橢圓 上,且橢圓 的離心率是 ,

  可得 ,

  可解得:

  故橢圓 的標(biāo)準(zhǔn)方程為 .

  (2)設(shè)點(diǎn) 的坐標(biāo)分別為 ,

  (ⅰ)當(dāng)直線 斜率不存在時,由題意知,直線方程和曲線方程聯(lián)立得: , ,

  (ⅱ)當(dāng)直線 的斜率存在時,設(shè)直線 的方程為 ,

  聯(lián)立 ,消去 得: ,

  由 ,有 ,

  由韋達(dá)定理得: , ,

  故 ,可得: ,

  可得: ,

  整理為: ,

  故有 ,

  化簡整理得: ,解得: 或 ,

  當(dāng) 時直線 的方程為 ,即 ,過定點(diǎn) 不合題意,

  當(dāng) 時直線 的方程為 ,即 ,過定點(diǎn) ,

  綜上,由(ⅰ)(ⅱ)知,直線 過定點(diǎn) .

  【點(diǎn)睛】本題考查橢圓方程的求法,考查直線方程是否過定點(diǎn)的判斷與求法,考查橢圓、直線方程、根的判別式、韋達(dá)定理等基礎(chǔ)知識,考查運(yùn)算求解能力、推理論證能力,是中檔題.

  20.在創(chuàng)新“全國文明衛(wèi)生城”過程中,某市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次),通過隨機(jī)抽樣,得到參加問卷調(diào)查的100人的得分統(tǒng)計(jì)結(jié)果如表所示:

  (1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分 , 近似為這100人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求 ;

  (2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:

 ?、俚梅植坏陀?的可以獲贈2次隨機(jī)話費(fèi),得分低于 的可以獲贈1次隨機(jī)話費(fèi);

 ?、诿看潍@贈的隨機(jī)話費(fèi)和對應(yīng)的概率為:

  現(xiàn)有市民甲參加此次問卷調(diào)查,記 (單位:元)為該市民參加問卷調(diào)查獲贈的話費(fèi),求 的分布列與數(shù)學(xué)期望.

  附:參考數(shù)據(jù)與公式: ,若 ,則 , , .

  【答案】(1)0.8185(2)詳見解析

  【解析】

  【分析】

  (1)由題意計(jì)算平均值,根據(jù)Z~N( , )計(jì)算 的值;

  (2)由題意知X的可能取值,計(jì)算對應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望值.

  【詳解】(1)由題意得:

  ∴ ,∵ ,

  ∴ ,

  ,

  ∴

  綜上,

  (2)由題意知, ,

  獲贈話費(fèi) 的可能取值為20,40,50,70,100

  ;

  ;

  ;

  ,

  ;

  的分布列為:

  ∴

  【點(diǎn)睛】本題考查了離散型隨機(jī)變量的分布列、數(shù)學(xué)期望以及正態(tài)分布等基礎(chǔ)知識,也考查了運(yùn)算求解能力,是中檔題.

  21.已知函數(shù) , , .

  (1)已知 為函數(shù) 的公共點(diǎn),且函數(shù) 在點(diǎn) 處的切線相同,求的值;

  (2)若 在 上恒成立,求的取值范圍.

  【答案】(1) (2)

  【解析】

  【分析】

  (1)求出函數(shù)的導(dǎo)數(shù),由函數(shù)f(x),g(x)在點(diǎn)T處的切線相同,得到 ,且 ,從而求出a的值即可;

  (2)令 ,將a與0、e分別比較進(jìn)行分類,討論 的單調(diào)性及最值情況,從而找到符合條件的a的值.

  【詳解】(1)由題意 , ,

  ∵點(diǎn) 為函數(shù) 的公共點(diǎn),且函數(shù) 在點(diǎn) 處的切線相同,

  故 且 ,

  由(2)得: ,

  ∵ ,∴ ,從而 ,∴

  代入(1)得: ,∴ , .

  (2)令

  ,

 ?、佼?dāng) 時, , 在 單調(diào)遞增,

  ∴ ,滿足題意;

 ?、诋?dāng) 時,

  ∵ ,∴ ,∴ ,∴ ,∴ 在 單調(diào)遞增,

  需 解得: ,∴

  ③當(dāng) 時, ,使

  當(dāng) 時, , 單調(diào)遞減;

  當(dāng) 時, , 單調(diào)遞增;

  ,

  ∵ ,

  ∴

  ,不恒成立,

  綜上,實(shí)數(shù)的取值范圍是 .

  【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義及函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.

  請考生在22、23兩題中任選一題作答,如果多做,則按所做的第一題記分.

  22.選修4-4:坐標(biāo)系與參數(shù)方程

  在平面直角坐標(biāo)系 中,直線的參數(shù)方程為 (為參數(shù), ),以坐標(biāo)原點(diǎn) 為極點(diǎn),以 軸正半軸為極軸建立極坐標(biāo)系,曲線 的極坐標(biāo)方程是 .

  (1)求直線的普通方程和曲線 的直角坐標(biāo)方程;

  (2)已知直線與曲線 交于 兩點(diǎn),且 ,求實(shí)數(shù)的值.

  【答案】(1)的普通方程 ; 的直角坐標(biāo)方程是 ;(2)

  【解析】

  【分析】

  (1)把直線l的標(biāo)準(zhǔn)參數(shù)方程中的t消掉即可得到直線的普通方程,由曲線C的極坐標(biāo)方程為ρ=2 sin(θ ),展開得 (ρsinθ+ρcosθ),利用 即可得出曲線 的直角坐標(biāo)方程;

  (2)先求得圓心 到直線 的距離為 ,再用垂徑定理即可求解.

  【詳解】(1)由直線的參數(shù)方程為 ,所以普通方程為

  由曲線 的極坐標(biāo)方程是 ,

  所以 ,

  所以曲線 的直角坐標(biāo)方程是

  (2)設(shè) 的中點(diǎn)為 ,圓心 到直線 的距離為 ,則 ,

  圓 ,則 , ,

  ,

  由點(diǎn)到直線距離公式,

  解得 ,所以實(shí)數(shù)的值為 .

  【點(diǎn)睛】本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、直線參數(shù)方程化為普通方程,考查了點(diǎn)到直線的距離公式,圓中垂徑定理,考查了推理能力與計(jì)算能力,屬于中檔題.

  23.選修4-5:不等式選講

  已知函數(shù) .

  (1)若不等式 的解集為 ,求的值;

  (2)當(dāng) 時,求 的解集.

  【答案】(1) ;(2)

  【解析】

  【分析】

  (1)通過討論a的范圍,求出不等式的解集,結(jié)合對應(yīng)關(guān)系求出a的值即可;

  (2)代入a的值,通過討論x的范圍,求出各個區(qū)間上的不等式的解集,取并集即可.

  【詳解】(1)由 得 ,

  當(dāng) 時,

  由 ,得 ,

  當(dāng) 時,

  由 ,無解

  所以 .

  (2)

  當(dāng) 時,原不等式化為 ,所以 ;

  當(dāng) 時,原不等式化為 ,所以 (舍);

  當(dāng) 時,原不等式化為

  所以,不等式的解集為 .

  【點(diǎn)睛】本題考查了解絕對值不等式問題,考查分類討論思想,轉(zhuǎn)化思想,是一道中檔題.


高三理科數(shù)學(xué)上學(xué)期期末試卷相關(guān)文章:

1.高中會考數(shù)學(xué)試題及答案

2.高三數(shù)學(xué)函數(shù)專題訓(xùn)練題及答案

3.高中數(shù)學(xué)解三角形試題及答案

4.高二數(shù)學(xué)試卷分析

5.高三數(shù)學(xué)概率大題(含答案)

4158800