學(xué)習(xí)啦>學(xué)習(xí)方法>高中學(xué)習(xí)方法>高二學(xué)習(xí)方法>高二數(shù)學(xué)>

高二數(shù)學(xué)等差數(shù)列公式歸納

時(shí)間: 鳳婷983 分享

  等差數(shù)列是高二數(shù)學(xué)的重要概念,下面是學(xué)習(xí)啦小編給大家?guī)淼母叨?shù)學(xué)等差數(shù)列公式歸納,希望對(duì)你有幫助。

  高二數(shù)學(xué)等差數(shù)列公式

  Sn=(a1+an)n/2

  Sn=na1+n(n-1)d/2; (d為公差)

  Sn=An2+Bn; A=d/2,B=a1-(d/2)

  和為 Sn

  首項(xiàng) a1

  末項(xiàng) an

  公差d

  項(xiàng)數(shù)n

  通項(xiàng)

  首項(xiàng)=2×和÷項(xiàng)數(shù)-末項(xiàng)

  末項(xiàng)=2×和÷項(xiàng)數(shù)-首項(xiàng)

  末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差

  項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))(除以)/ 公差+1

  公差=如:1+3+5+7+……99 公差就是3-1

  d=an-a<n-1>

  性質(zhì):

  若 m、n、p、q∈N

 ?、偃鬽+n=p+q,則am+an=ap+aq

 ?、谌鬽+n=2q,則am+an=2aq

  高二數(shù)學(xué)學(xué)習(xí)方法

  抓好基礎(chǔ)是關(guān)鍵

  數(shù)學(xué)習(xí)題無非就是數(shù)學(xué)概念和數(shù)學(xué)思想的組合應(yīng)用,弄清數(shù)學(xué)基本概念、基本定理、基本方法是判斷題目類型、知識(shí)范圍的前提,是正確把握解題方法的依據(jù)。只有概念清楚,方法全面,遇到題目時(shí),就能很快的得到解題方法,或者面對(duì)一個(gè)新的習(xí)題,就能聯(lián)想到我們平時(shí)做過的習(xí)題的方法,達(dá)到迅速解答。弄清基本定理是正確、快速解答習(xí)題的前提條件,特別是在立體幾何等章節(jié)的復(fù)習(xí)中,對(duì)基本定理熟悉和靈活掌握能使習(xí)題解答條理清楚、邏輯推理嚴(yán)密。反之,會(huì)使解題速度慢,邏輯混亂、敘述不清。

  嚴(yán)防題海戰(zhàn)術(shù)

  做習(xí)題是為了鞏固知識(shí)、提高應(yīng)變能力、思維能力、計(jì)算能力。學(xué)數(shù)學(xué)要做一定量的習(xí)題,但學(xué)數(shù)學(xué)并不等于做題,在各種考試題中,有相當(dāng)?shù)牧?xí)題是靠簡(jiǎn)單的知識(shí)點(diǎn)的堆積,利用公理化知識(shí)體系的演繹而就能解決的,這些習(xí)題是要通過做一定量的習(xí)題達(dá)到對(duì)解題方法的展移而實(shí)現(xiàn)的,但,隨著高考的改革,高考已把考查的重點(diǎn)放在創(chuàng)造型、能力型的考查上。因此要精做習(xí)題,注意知識(shí)的理解和靈活應(yīng)用,當(dāng)你做完一道習(xí)題后不訪自問:本題考查了什么知識(shí)點(diǎn)?什么方法?我們從中得到了解題的什么方法?這一類習(xí)題中有什么解題的通性?實(shí)現(xiàn)問題的完全解決我應(yīng)用了怎樣的解題策略?只有這樣才會(huì)培養(yǎng)自己的悟性與創(chuàng)造性,開發(fā)其創(chuàng)造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強(qiáng)的題目時(shí)可以有一個(gè)科學(xué)的方法解決它。

  歸納數(shù)學(xué)大思維

  數(shù)學(xué)學(xué)習(xí)其主要的目的是為了培養(yǎng)我們的創(chuàng)造性,培養(yǎng)我們處理事情、解決問題的能力,因此,對(duì)處理數(shù)學(xué)問題時(shí)的大策略、大思維的掌握顯得特別重要,在平時(shí)的學(xué)習(xí)時(shí)應(yīng)注重歸納它。在平時(shí)聽課時(shí),一個(gè)明知的學(xué)生,應(yīng)該聽老師對(duì)該題目的分析和歸納。但還有不少學(xué)生,不注意教師的分析,往往沉靜在老師講解的每一步計(jì)算、每一步推證過程。聽課是認(rèn)真,但費(fèi)力,聽完后是滿腦子的計(jì)算過程,支離破碎。老師的分析是引導(dǎo)學(xué)生思考,啟發(fā)學(xué)生自己設(shè)計(jì)出處理這些問題的大策略、大思維。當(dāng)教師解答習(xí)題時(shí),學(xué)生要用自己的計(jì)算和推理已經(jīng)知道老師要干什么。另外,當(dāng)題目的答案給出時(shí),并不代表問題的解答完畢,還要花一定的時(shí)間認(rèn)真總結(jié)、歸納理解記憶。要把這些解題策略全部納入自己的腦海成為永久地記憶,變?yōu)樽约航鉀Q這一類型問題的經(jīng)驗(yàn)和技能。同時(shí)也解決了學(xué)生中會(huì)聽課而不會(huì)做題目的壞毛病。

  積累考試經(jīng)驗(yàn)

  本學(xué)期每月初都有大的考試,加之每單元的單元測(cè)驗(yàn)和模擬考試有十幾次,抓住這些機(jī)會(huì),積累一定的考試經(jīng)驗(yàn),掌握一定的考試技巧,使自己應(yīng)有的水平在考試中得到充分的發(fā)揮。其實(shí),考試是單兵作戰(zhàn),它是考驗(yàn)一個(gè)人的承受能力、接受能力、解決問題等綜合能力的戰(zhàn)場(chǎng)。這些能力的只有在平時(shí)的考試中得到培養(yǎng)和訓(xùn)練。

  看了“高二數(shù)學(xué)等差數(shù)列公式歸納”的人還看了:

1.高二數(shù)學(xué)必修5等差數(shù)列知識(shí)點(diǎn)

2.高中數(shù)學(xué)等差數(shù)列求和公式

3.高三數(shù)學(xué)總復(fù)習(xí)等差數(shù)列公式

4.高二數(shù)學(xué)函數(shù)公式歸納

5.高二所有數(shù)學(xué)公式要點(diǎn)

6.高二數(shù)學(xué)數(shù)列試題的解題方法和技巧

7.高二數(shù)學(xué)二項(xiàng)式定理知識(shí)點(diǎn)梳理

高二數(shù)學(xué)等差數(shù)列公式歸納

等差數(shù)列是高二數(shù)學(xué)的重要概念,下面是學(xué)習(xí)啦小編給大家?guī)淼母叨?shù)學(xué)等差數(shù)列公式歸納,希望對(duì)你有幫助。 高二數(shù)學(xué)等差數(shù)列公式 Sn=(a1+an)n/2 Sn=na1+n(n-1)d/2; (d為公差) Sn=An2+Bn; A=d/2,B=a1-(d/2) 和為 Sn 首項(xiàng) a1 末項(xiàng) an 公
推薦度:
點(diǎn)擊下載文檔文檔為doc格式
2649950