學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) > 高中數(shù)學(xué)高分解題方法總結(jié)

高中數(shù)學(xué)高分解題方法總結(jié)

時間: 鳳婷983 分享

高中數(shù)學(xué)高分解題方法總結(jié)

  掌握正確有效的解題方法和解題技巧是提升學(xué)生數(shù)學(xué)解題效率的關(guān)鍵,下面是學(xué)習(xí)啦小編給大家?guī)淼母咧袛?shù)學(xué)高分解題方法總結(jié),希望對你有幫助。

  高中數(shù)學(xué)高分解題方法(一)

  調(diào)理大腦思緒,提前進入數(shù)學(xué)情境

  考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進而醞釀數(shù)學(xué)思維,提前進入“角色”,通過清點用具、暗示重要知識和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯誤等,進行針對性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動的心態(tài)準(zhǔn)備應(yīng)考。

  沉著應(yīng)戰(zhàn),確保旗開得勝,以利振奮精神

  良好的開端是成功的一半,從考試的心理角度來說,這確實是很有道理的,拿到試題后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套試題,摸透題情,然后穩(wěn)操一兩個易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個良好的開端,以振奮精神,鼓舞信心,很快進入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵,穩(wěn)拿中低,見機攀高。

  “內(nèi)緊外松”,集中注意,消除焦慮怯場

  集中注意力是考試成功的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會走向反面,形成怯場,產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。

  一“慢”一“快”,相得益彰

  有些考生只知道考場上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達,結(jié)果是思維受阻或進入死胡同,導(dǎo)致失敗。應(yīng)該說,審題要慢,解答要快。審題是整個解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認識,為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。

  “六先六后”,因人因卷制宜

  在通覽全卷,將簡單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場解題能力的黃金季節(jié)了,這時,考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。

  1.先易后難

  就是先做簡單題,再做綜合題,應(yīng)根據(jù)自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

  2.先熟后生

  通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應(yīng)想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對全卷整體把握之后,就可實施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發(fā)揮,達到拿下中高檔題目的目的。

  3.先同后異

  先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔(dān),保持有效精力。

  4.先小后大

  小題一般是信息量少、運算量小,易于把握,不要輕易放過,應(yīng)爭取在大題之前盡快解決,從而為解決大題贏得時間,創(chuàng)造一個寬松的心理基矗

  5.先點后面

  近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營,由點到面

  6.先高后低

  即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。

  高中數(shù)學(xué)高分解題方法(二)

  確保運算準(zhǔn)確,立足一次成功

  數(shù)學(xué)高考題的容量在120分鐘時間內(nèi)完成大小26個題,時間很緊張,不允許做大量細致的解后檢驗,所以要盡量準(zhǔn)確運算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說,就只好舍快求對了,因為解答不對,再快也無意義。

  講求規(guī)范書寫,力爭既對又全

  考試的又一個特點是以卷面為唯一依據(jù)。這就要求不但會而且要對、對且全,全而規(guī)范。會而不對,令人惋惜;對而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因為字跡潦草,會使閱卷老師的第一印象不良,進而使閱卷老師認為考生學(xué)習(xí)不認真、基本功不過硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書寫要工整,卷面能得分”講的也正是這個道理。

  面對難題,講究方法,爭取得分

  會做的題目當(dāng)然要力求做對、做全、得滿分,而更多的問題是對不能全面完成的題目如何分段得分。下面有兩種常用方法。

  1.缺步解答。

  對一個疑難問題,確實啃不動時,一個明智的解題方法是:將它劃分為一個個子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進行一步就可得到這一步的分數(shù)。如從最初的把文字語言譯成符號語言,把條件和目標(biāo)譯成數(shù)學(xué)表達式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動點坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。

  2.跳步解答

  解題過程卡在一中間環(huán)節(jié)上時,可以承認中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說明此途徑不對,立即否得到正確結(jié)論,如得不出,說明此途徑不對,立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時間限制,中間結(jié)論來不及得到證實,就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來由于解題的正遷移對中間步驟想起來了,或在時間允許的情況下,經(jīng)努力而攻下了中間難點,可在相應(yīng)題尾補上。

  以退求進,立足特殊

  發(fā)散一般對于一個較一般的問題,若一時不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強條件,等等??傊?,退到一個你能夠解決的程度上,通過對“特殊”的思考與解決,啟發(fā)思維,達到對“一般”的解決。

  應(yīng)用性問題思路:面—點—線

  解決應(yīng)用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長敘述,抓住重點詞句,提出重點數(shù)據(jù),此為“點”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,求解過程和結(jié)果都不能離開實際背景。

  執(zhí)果索因,逆向思考,正難則反

  對一個問題正面思考發(fā)生思維受阻時,用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。

  回避結(jié)論的肯定與否定,解決探索性問題

  對探索性問題,不必追求結(jié)論的“是”與“否”、“有”與“無”,可以一開始,就綜合所有條件,進行嚴格的推理與討論,則步驟所至,結(jié)論自明。
看了“高中數(shù)學(xué)高分解題方法總結(jié)”的人還看了:

1.高中數(shù)學(xué)12種高分解題方法

2.高一數(shù)學(xué)常用解題方法歸納

3.高一數(shù)學(xué)高分技巧 高一數(shù)學(xué)得高分的秘訣

4.高一數(shù)學(xué)得高分的學(xué)習(xí)方法

5.高一數(shù)學(xué)答題技巧

6.高一數(shù)學(xué)如何學(xué)習(xí)才能高分 高一數(shù)學(xué)得高分的學(xué)習(xí)方法

2624699