學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 通用學(xué)習(xí)方法 > 學(xué)習(xí)方法指導(dǎo) >

高中數(shù)學(xué)解題技巧最后沖刺得分題

時(shí)間: 鞏詩(shī)721232 分享

  高中數(shù)學(xué)題是很多文科生的噩夢(mèng),同時(shí)也是一些理科生的難題。對(duì)于這些“難搞”的數(shù)學(xué)題,我們能有什么應(yīng)對(duì)方法嗎?小編當(dāng)初學(xué)習(xí)數(shù)學(xué)的時(shí)候總會(huì)有一本錯(cuò)題本來(lái)記錄,并且反復(fù)練習(xí),很有效哦!

  下面是高中數(shù)學(xué)大題解題技巧匯總,供參考。

  高中數(shù)學(xué)大題解題思路

  高考數(shù)學(xué)大題結(jié)構(gòu)安排:第三步就是將化簡(jiǎn)為一個(gè)整體的式子(如y=a的形式)根據(jù)題目要

  A、三角函數(shù)與向量的結(jié)合求來(lái)解答:

  B、概率論最值(值域):要首先求出的范圍,然后求出y的范圍

  C、立體幾何單調(diào)性:首先明確sin函數(shù)的單調(diào)性,然后將代入sin函數(shù)的單調(diào)范

  D、圓錐曲線圍解出x的范圍(這里一定要注意2的正負(fù)性)

  E、導(dǎo)數(shù)周期性:利用公式求解

  F、數(shù)列對(duì)稱性:要熟練掌握sin、cos、tan函數(shù)關(guān)于軸對(duì)稱和點(diǎn)對(duì)稱的公式。

  高中數(shù)學(xué)大題解題技巧匯總

  解題方法淺析:其實(shí)高考大題并不可怕,它就是一個(gè)按部就班的同時(shí)解題過(guò)程中過(guò)程,只要你能把握其中的解題思路,隨便怎么都可以搞到六七十不要忘記了加上周期性。分的,甚至猛一點(diǎn)的可以拿滿分。那么我就簡(jiǎn)單的說(shuō)一下我的想法未知數(shù)的取值范圍:請(qǐng)文科生參照第九套試卷第二問(wèn)的做法;理科和思路,希望對(duì)大家有幫助,同時(shí)也希望大家下來(lái)在這些方面有所生同樣參照第九套試加強(qiáng),高考數(shù)學(xué)大題就不是問(wèn)題了!卷第二問(wèn)的做法。

  a、三角函數(shù)與向量解題技巧

  平移問(wèn)題:永遠(yuǎn)記住左右平移只是對(duì)x做變化,上下平移就是對(duì)y考點(diǎn):對(duì)于這類題型我們首先要知道它一般都是考我們什么,我覺(jué)做變化,永遠(yuǎn)切記。

  b、概率解題技巧

  它主要是考我們向量的數(shù)量積以及三角函數(shù)的化簡(jiǎn)問(wèn)題看,同時(shí)可能會(huì)涉及到正余弦考點(diǎn):對(duì)文科生來(lái)說(shuō),這個(gè)類型的題主要是考我們對(duì)題目意思的定理,難度一般不大。理解,在解題過(guò)程能學(xué)

  只要你能熟練掌握公式,這類題都不是問(wèn)題。會(huì)樹(shù)狀圖和列表,題目也是相當(dāng)?shù)暮?jiǎn)單,只要你能審題準(zhǔn)確,這類題型:這部分大題一般都是涉及以下的題型:題都是送分題;對(duì)理

  最值(值域)、單調(diào)性、周期性、對(duì)稱性、未知數(shù)的取值范圍、平移科生來(lái)說(shuō),主要注意結(jié)合排列組合、獨(dú)立重復(fù)試驗(yàn)知識(shí)點(diǎn),同時(shí)會(huì)問(wèn)題等要求我們準(zhǔn)確掌握分

  解題思路:布列、期望、方差的公式,難度也是不大,都屬于送分題,是要求第一步就是根根據(jù)向量公式將表示出來(lái):其表示共有兩種方法,一我們必須拿全部分?jǐn)?shù)。

  種是模長(zhǎng)公式(該種方法是在題目沒(méi)有告訴坐標(biāo)的情況下應(yīng)用),即,題型:在這里我就不多說(shuō)了,都是求概率,沒(méi)有什么新穎的地方,另一種就是用坐標(biāo)公式表示出來(lái)(該種方法是在題目告訴了坐標(biāo)),不過(guò)要注意我們?cè)?jīng)

  即在這里遇到過(guò)的線性規(guī)劃問(wèn)題,還有就是籃球成功率與命中率和防第二步就是三角函數(shù)的化簡(jiǎn):化簡(jiǎn)的方法都是涉及到三角函數(shù)的誘守率之間關(guān)系的類似

  導(dǎo)公式(只要題目出現(xiàn)了跟或者有關(guān)的角度,一定想到誘導(dǎo)公式),題目。

  解題思路:

  第一步就是求出總體的情況

  第二步就是求出符合題意的情況

  第三步就是將兩者比起來(lái)就是題目要求的概率

  這類型題目對(duì)理科生來(lái)說(shuō)一定要掌握好期望與方差的公式,同時(shí)最重要的是獨(dú)立重復(fù)試驗(yàn)概率的求法。

  c、幾何解題技巧

  考點(diǎn):這類題主要是考察咱們對(duì)空間物體的感覺(jué),希望大家在平時(shí)學(xué)習(xí)過(guò)程中,多培養(yǎng)一些立體的、空間的感覺(jué),將自己設(shè)身處地于那么一個(gè)立體的空間中去,這類題對(duì)文科生來(lái)說(shuō),難度都比較簡(jiǎn)單,但是對(duì)理科生來(lái)說(shuō),可能會(huì)比較復(fù)雜一些,特別是在二面角的求法上,對(duì)理科生來(lái)說(shuō)是一個(gè)巨大的挑戰(zhàn),它需要理科生能對(duì)兩個(gè)面夾角培養(yǎng)出感情來(lái),這樣輔助線的做法以及邊長(zhǎng)的求法就變得如此之簡(jiǎn)單了。

  題型:這種題型分為兩類:第一類就是證明題,也就是證明平行(線面平行、面面平行),第二類就是證明垂直(線線垂直、線面垂直、面面垂直);第二就是計(jì)算題,包括棱錐體的體積公式計(jì)算、點(diǎn)到面的距離、有關(guān)二面角的計(jì)算(理科生掌握)解題思路:

  證線面平行如直線與面有兩種方法:一種方法是在面中找到一條線與平行即可(一般情況下沒(méi)有現(xiàn)成的線存在,這個(gè)時(shí)候需要我們?cè)诿孀鲆粭l輔助線去跟線平行,一般這條輔助線的作法就是找中點(diǎn));另一種方法就是過(guò)直線作一個(gè)平面與面平行即可,輔助面的作法也基本上是找中點(diǎn)。

  證面面平行:這類題比較簡(jiǎn)單,即證明這兩個(gè)平面的兩條相交線對(duì)應(yīng)平行即可。

  證線面垂直如直線與面:這類型的題主要是看有前提沒(méi)有,即如果直線所在的平面與面在題目中已經(jīng)告訴我們是垂直關(guān)系了,那么我們只需要證明直線垂直于面與面的交線即可;如果題目中沒(méi)有說(shuō)直線所在的平面與面是垂直的關(guān)系,那么我們需要證明直線垂直面內(nèi)的兩條相交線即可。

  其實(shí)說(shuō)實(shí)話,證明垂直的問(wèn)題都是很簡(jiǎn)單的,一般都有什么勾股定理呀,還有更多的是根據(jù)一個(gè)定理(一條直線垂直于一個(gè)面,那么這條直線就垂直這個(gè)面的任何一條線)來(lái)證明垂直。

  證面面垂直與證面面垂直:這類問(wèn)題也比較簡(jiǎn)單,就是需要轉(zhuǎn)化為證線面垂直即可。

  體積和點(diǎn)到面的距離計(jì)算:如果是三棱錐的體積要注意等體積法公式的應(yīng)用,一般情況就是考這個(gè)東西,沒(méi)有什么難度的,關(guān)鍵是高的尋找,一定要注意,只要你找到了高你就勝利了。除了三棱錐以外的其他錐體不要用等體積法了哈,等體積法是三棱錐的專利。二面角的計(jì)算:這類型對(duì)理科生來(lái)說(shuō)是一個(gè)噩夢(mèng),其難度有二,第一是首先你要找到二面角在什么地方,另一個(gè)難度就是你要知道這個(gè)二面角所在直角三角形的邊長(zhǎng)分別是多少。

  二面角(面與面)的找法主要是遵循以下步驟:首先找到從一個(gè)面的頂點(diǎn)A出發(fā)引向另一個(gè)面的垂線,垂足為B,然后過(guò)垂足B向這兩個(gè)面的交線做垂線,垂足為C,最后將A點(diǎn)與C點(diǎn)連接起來(lái),這樣即為二面角(說(shuō)白了就是應(yīng)用三垂線定理來(lái)找)

  二面角所在直角三角形的邊長(zhǎng)求法:一般應(yīng)用勾股定理,相似三角形,等面積法,正余弦定理等。

  這里我著重說(shuō)一下就是在題目中可能會(huì)出現(xiàn)這樣的情況,就是兩個(gè)面的相交處是一個(gè)點(diǎn),這個(gè)時(shí)候需要我們過(guò)這個(gè)點(diǎn)補(bǔ)充完整兩個(gè)面的交線,不知道怎么補(bǔ)交線的跟我說(shuō)一聲。

  d、圓錐曲線解題技巧

  考點(diǎn):這類題型,其實(shí)難度真的不是很大,我個(gè)人理解主要是考大家的計(jì)算能力怎么樣,還有就是對(duì)題目的理解能力,同時(shí)也希望大家都能明白圓錐曲線中a,b,c,e的含義以及他們之間的關(guān)系,還有就是橢圓、雙曲線、拋物線的兩種定義,如果你現(xiàn)在還不知道,趁早去記一下,不然考試的時(shí)候都不知道的哈,我真的無(wú)語(yǔ)了。題型:這種類型的題一般都是以下幾種出法:第一個(gè)問(wèn)一般情況就是求圓錐曲線方程或者就是求某一個(gè)點(diǎn)的軌跡方程,第二個(gè)問(wèn)一般都是涉及到直線的問(wèn)題,要么就是求范圍,要么就是求定值,要么就是求直線方程解題思路:

  求圓錐曲線方程:一般情況下題目有兩種求法,一種就是直接根據(jù)題目條件來(lái)求解(如題目告訴你曲線的離心率和過(guò)某一個(gè)點(diǎn)坐標(biāo)),另一種就是隱含的告訴我們橢圓的定義,然后讓我們?nèi)プ聊テ渲械囊馑?,去?xiě)出曲線的方程,這種問(wèn)法就比較難點(diǎn),其實(shí)也主要是看我們的基本功底怎么樣,對(duì)基礎(chǔ)扎實(shí)的同學(xué)來(lái)說(shuō),這種問(wèn)法也不是問(wèn)題的。求軌跡方程:這種問(wèn)題需要我們首先對(duì)要求點(diǎn)的坐標(biāo)設(shè)出來(lái)A(x,y),然后用A點(diǎn)表示出題目中某一已知點(diǎn)B的坐標(biāo),然后用表示出來(lái)的點(diǎn)坐標(biāo)代入點(diǎn)B的軌跡方程中,這樣就可以求出A點(diǎn)的軌跡方程了,一般求出來(lái)都是圓錐曲線方程,如果不是,你就可能錯(cuò)了。直線與圓錐曲線問(wèn)題:三個(gè)步驟你還知道嗎(一設(shè)、二代,三韋達(dá))。

  先做完這個(gè)三個(gè)步驟,然后看題目給了我們什么條件,然后對(duì)條件進(jìn)行化簡(jiǎn)(一般的條件都是跟向量呀,斜率呀什么的聯(lián)系起來(lái),希望大家注意點(diǎn)),在化簡(jiǎn)的過(guò)程中我們需要代韋達(dá)進(jìn)去運(yùn)算,如果我們?cè)谶\(yùn)算的過(guò)程中遇到了,一定要記得應(yīng)用直線方程將表示出來(lái),然后根據(jù)韋達(dá)化簡(jiǎn)到最后結(jié)果。最后看題目問(wèn)我們什么,如果問(wèn)定值,你還知道怎么做么,不知道的就現(xiàn)在來(lái)問(wèn)我,如果問(wèn)我們范圍,你還知道有一個(gè)東西么(),如果問(wèn)直線方程,你求出來(lái)的直線斜率有兩個(gè),還知道怎么做么,如果要想舍去其中一個(gè),你還記得一個(gè)東西么()。同時(shí)如果你是一個(gè)追求完美的人,我希望你在做題的時(shí)候考慮到直線斜率存在與否的問(wèn)題,如果你覺(jué)得你心胸開(kāi)闊,那點(diǎn)分?jǐn)?shù)我不要了,我考慮斜率存不存在的問(wèn)題,那么我就說(shuō)你牛!!

  個(gè)人理解的話,圓錐曲線都不是很難的,就是計(jì)算量比較復(fù)雜了一點(diǎn),但是只要我們用心、專心點(diǎn),都是可以做出來(lái)的,不信你慢慢的去嘗試看看!

  e、函數(shù)導(dǎo)數(shù)解題技巧

  考點(diǎn):這種類型的題主要是考大家對(duì)導(dǎo)數(shù)公式的應(yīng)用,導(dǎo)數(shù)的含義,明確導(dǎo)數(shù)可以用來(lái)干什么,如果你都不知道導(dǎo)數(shù)可以用來(lái)干什么,

  你還談什么做題呢。在導(dǎo)數(shù)這塊,我是希望大家都能盡量的多拿一些分?jǐn)?shù),因?yàn)槠潆y度不是很大,主要你用心去學(xué)習(xí)了,記住方法了,這個(gè)分?jǐn)?shù)對(duì)我們來(lái)說(shuō)都是可以小菜一碟的。題型:最值、單調(diào)性(極值)、未知數(shù)的取值范圍(不等式)、未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn))解題思路:

  最值、單調(diào)性(極值):首先對(duì)原函數(shù)求導(dǎo),然后令導(dǎo)函數(shù)為零求出極值點(diǎn),然后畫(huà)出表格判斷出在各個(gè)區(qū)間的單調(diào)性,最后得出結(jié)論。未知數(shù)的取值范圍(不等式):其實(shí)它就是一種一種變相的求最值問(wèn)題,不知道大家還記得么,記住我講課的表情,未知數(shù)放在一邊,把已知的數(shù)放在另外一邊,求出相應(yīng)的最值,咱們就勝利了,這個(gè)種看起來(lái)很復(fù)雜,其實(shí)很簡(jiǎn)單,你說(shuō)呢。未知數(shù)的取值范圍(交點(diǎn)或者零點(diǎn)):這種要是沒(méi)有掌握方法的人,覺(jué)得:哇,怎么就那么難呀,其實(shí)不然,很簡(jiǎn)單的,只是各位你要明確這種題的解題思路哈。首先還是需要我們把要求的未知數(shù)放在一邊,把知道的數(shù)放在一邊去,這樣去求出已知數(shù)的最值,然后簡(jiǎn)單的畫(huà)一個(gè)圖形我們就可以分析出未知數(shù)的取值范圍了,說(shuō)起來(lái)也挺簡(jiǎn)單的,如果有什么不了解的,可以馬上問(wèn)我,不要留下遺憾。

  f、數(shù)列解題技巧

  考點(diǎn):對(duì)于數(shù)列,我對(duì)大家的要求不是很高,我只是希望大家能盡自己的所能,盡量的去多拿分?jǐn)?shù),如果要是有人能全部做對(duì),我也替你高興,這類題型,主要是考大家對(duì)等比等差數(shù)列的理解,包括通項(xiàng)與求和,難度還是有的,其實(shí)你要是留意生活的話,這類題還是不是我們想象中那么困難哈。

  題型:一般分為證明和計(jì)算(包括通項(xiàng)公式、求和、比較大小),解題思路:

  證明:就是要求我們證明一個(gè)數(shù)列是等比數(shù)列后還是等差數(shù)列,這種題的做法有兩種,一種是用,或者,我們就可以證明其為一個(gè)等差數(shù)列或者等比數(shù)列。另一種方法就是應(yīng)用等差中項(xiàng)或者等比中項(xiàng)來(lái)證明數(shù)列。計(jì)算(通項(xiàng)公式):一般這個(gè)題都還是比較簡(jiǎn)單的,這類型的題,我只要求大家能掌握其中題目表達(dá)式的關(guān)鍵字眼(如出現(xiàn)要用什么方法,如果出現(xiàn)要用什么方法,如果出現(xiàn)如果出現(xiàn)),我相信通項(xiàng)公式對(duì)大家來(lái)說(shuō)應(yīng)該是達(dá)到駕輕就熟的地步了,希望大家能把握這么容易的分?jǐn)?shù)。

  求和:這種題對(duì)文科生來(lái)說(shuō),應(yīng)該知道我要說(shuō)什么了吧,王福叉數(shù)列(等比等差數(shù)列)呀!!,三個(gè)步驟:乘公比,錯(cuò)位相減,化系數(shù)為一。光是記住步驟沒(méi)有用的,同時(shí)我也希望同學(xué)們不要眼高手低,不要以為很簡(jiǎn)單的,其實(shí)真正能算正確的不一定那么容易的,所以我還是希望大家多加練習(xí),親自操作一下。對(duì)理科生來(lái)說(shuō),也要注意這樣的數(shù)列求和,同時(shí)還要掌握一種數(shù)列求和,就是這個(gè)數(shù)列求和是將其中的一個(gè)等差或等比數(shù)列按照一定的順序抽調(diào)了一部分?jǐn)?shù)列,然后構(gòu)成一個(gè)新的數(shù)列求和,還有就是要注意了如果題目里面涉及到這個(gè)的時(shí)候,一定要記住數(shù)列相互奇偶性的討論了,非常的重要哈。

  比較大小:這種題目我對(duì)大家的要求很低,因?yàn)橐话愣际欠趴s法的問(wèn)題,我也不是要求大家非要怎么樣怎么樣的,對(duì)這類問(wèn)題需要我們的基本功底很深,要學(xué)會(huì)適當(dāng)?shù)姆糯蠛头判〉膯?wèn)題,對(duì)這個(gè)問(wèn)題的把握,需要大家對(duì)一些經(jīng)常遇到的放縮公式印在腦海里面。

  補(bǔ)充:在不是導(dǎo)數(shù)的其他大題中,如果遇到求最值的問(wèn)題,一般有兩種方法求解,一種是二次函數(shù)求最值,一種就是基本不等式求最值。

  這些都是些個(gè)人總結(jié),當(dāng)然具體問(wèn)題還是要大家根據(jù)具體的題目來(lái)分析啦。最后希望這篇文章對(duì)數(shù)學(xué)感到頭疼的同學(xué)們有所幫助!

263794