學(xué)習(xí)啦 > >

高三數(shù)學(xué)知識(shí)點(diǎn)歸納

時(shí)間: 康華0 分享

我們學(xué)生時(shí)期好比是人生的春天,只有從現(xiàn)在起熱愛學(xué)習(xí)、勤奮讀書,養(yǎng)成良好行為習(xí)慣,打好各方面素質(zhì)基礎(chǔ),下面是小編為大家整理的高三數(shù)學(xué)知識(shí)點(diǎn)歸納,如果大家喜歡可以分享給身邊的朋友。

高三數(shù)學(xué)知識(shí)點(diǎn)歸納

高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇1

1.不等式的定義

在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

2.比較兩個(gè)實(shí)數(shù)的大小

兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對(duì)稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈N,n≥2);

(6)可開方:a>b>0?(n∈N,n≥2).

復(fù)習(xí)指導(dǎo)

1.“一個(gè)技巧”作差法變形的`技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

3.“兩條常用性質(zhì)”

(1)倒數(shù)性質(zhì):①a>b,ab>0?<;②a<0

③a>b>0,0;④0

(2)若a>b>0,m>0,則

①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇2

第一部分集合

(1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

(2)注意:討論的時(shí)候不要遺忘了的情況。

第二部分函數(shù)與導(dǎo)數(shù)

1、映射:注意①第一個(gè)集合中的元素必須有象;②一對(duì)一,或多對(duì)一。

2、函數(shù)值域的求法:①分析法;②配方法;③判別式法;④利用函數(shù)單調(diào)性;⑤換元法;⑥利用均值不等式;⑦利用數(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);⑧利用函數(shù)有界性(、、等);⑨導(dǎo)數(shù)法

3、復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:

①若f(x)的.定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出

②若f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

(2)復(fù)合函數(shù)單調(diào)性的判定:

①首先將原函數(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

②分別研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

5、函數(shù)的奇偶性

⑴函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;

⑵是奇函數(shù);

⑶是偶函數(shù);

⑷奇函數(shù)在原點(diǎn)有定義,則;

⑸在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

(6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

1、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=—f(x),那么f(x)為奇函數(shù);

2、對(duì)于函數(shù)f(x),如果對(duì)于定義域內(nèi)任意一個(gè)x,都有f(—x)=f(x),那么f(x)為偶函數(shù);

3、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,b)成中心對(duì)稱;

4、一般地,對(duì)于函數(shù)y=f(x),定義域內(nèi)每一個(gè)自變量x都有f(a+x)=f(a—x),則它的圖象關(guān)于x=a成軸對(duì)稱。

5、函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);

6、由函數(shù)奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則—x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。

高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇3

三角函數(shù)。

注意歸一公式、誘導(dǎo)公式的正確性。

數(shù)列題。

1、證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列;

2、最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證;

3、證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單

立體幾何題。

1、證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單;

2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),要建系;

3、注意向量所成的角的.余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

概率問題。

1、搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù);

2、搞清是什么概率模型,套用哪個(gè)公式;

3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

4、求概率時(shí),正難則反(根據(jù)p1+p2+……+pn=1);

5、注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法;

6、注意放回抽樣,不放回抽樣;

正弦、余弦典型例題。

1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點(diǎn),EF⊥BC,垂足為F,求sin∠EBF的值。

正弦、余弦解題訣竅。

1、已知兩角及一邊,或兩邊及一邊的對(duì)角(對(duì)三角形是否存在要討論)用正弦定理。

2、已知三邊,或兩邊及其夾角用余弦定理

3、余弦定理對(duì)于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇4

等式的性質(zhì):

①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。

不等式基本性質(zhì)有:

(1)a>bb

(2)a>b,b>ca>c(傳遞性)

(3)a>ba+c>b+c(c∈R)

(4)c>0時(shí),a>bac>bc

c<0時(shí),a>bac

運(yùn)算性質(zhì)有:

(1)a>b,c>da+c>b+d。

(2)a>b>0,c>d>0ac>bd。

(3)a>b>0an>bn(n∈N,n>1)。

(4)a>b>0>(n∈N,n>1)。

應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。

②關(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:

(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。

(2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。

(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。

高中數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)

任一A,B,記做AB

AB,BA ,A=B

AB={|A|,且|B|}

AB={|A|,或|B|}

Card(AB)=card(A)+card(B)-card(AB)

(1)命題

原命題若p則q

逆命題若q則p

否命題若p則q

逆否命題若q,則p

(2)AB,A是B成立的充分條件

BA,A是B成立的`必要條件

AB,A是B成立的充要條件

1.集合元素具有①確定性;②互異性;③無序性

2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法

(3)集合的運(yùn)算

①A∩(B∪C)=(A∩B)∪(A∩C)

②Cu(A∩B)=CuA∪CuB

Cu(A∪B)=CuA∩CuB

(4)集合的性質(zhì)

n元集合的字集數(shù):2n

真子集數(shù):2n-1;

非空真子集數(shù):2n-2

高中數(shù)學(xué)集合知識(shí)點(diǎn)歸納

1、集合的概念

集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對(duì)象集合在一起就稱為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:

元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

3、集合中元素的特性

(1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對(duì)象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

(2)互異性:“集合張的元素必須是互異的”,就是說“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

4、集合的分類

集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:

有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

無限集:含有無限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。

5、特定的集合的表示

為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請(qǐng)牢記。

(1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

(2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。

(3)全體整數(shù)的集合通常簡(jiǎn)稱為整數(shù)集Z。

(4)全體有理數(shù)的集合通常簡(jiǎn)稱為有理數(shù)集,記做Q。

(5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱為實(shí)數(shù)集,記做R。

高三數(shù)學(xué)知識(shí)點(diǎn)歸納精選篇5

1、圓柱體:

表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:

表面積:πR2+πR[(h2+R2)的平方根]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

3、正方體

a—邊長,S=6a2,V=a3

4、長方體

a—長,b—寬,c—高S=2(ab+ac+bc)V=abc

5、棱柱

S—底面積h—高V=Sh

6、棱錐

S—底面積h—高V=Sh/3

7、棱臺(tái)

S1和S2—上、下底面積h—高V=h[S1+S2+(S1S2)^1/2]/3

8、擬柱體

S1—上底面積,S2—下底面積,S0—中截面積

h—高,V=h(S1+S2+4S0)/6

9、圓柱

r—底半徑,h—高,C—底面周長

S底—底面積,S側(cè)—側(cè)面積,S表—表面積C=2πr

S底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

10、空心圓柱

R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)

11、直圓錐

r—底半徑h—高V=πr^2h/3

12、圓臺(tái)

r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/3

13、球

r—半徑d—直徑V=4/3πr^3=πd^3/6

14、球缺

h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3

15、球臺(tái)

r1和r2—球臺(tái)上、下底半徑h—高V=πh[3(r12+r22)+h2]/6

16、圓環(huán)體

R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑

V=2π2Rr2=π2Dd2/4

17、桶狀體

D—桶腹直徑d—桶底直徑h—桶高

V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)

V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

1984668