學(xué)習(xí)啦 > 新聞資訊 > 科技 > 人工智能應(yīng)用的論文

人工智能應(yīng)用的論文

時(shí)間: 坤杰951 分享

人工智能應(yīng)用的論文

  AI研究出現(xiàn)了新的高潮,有兩個(gè)方面的表現(xiàn),一方面在于人工智能理論方面有了新的進(jìn)展,另一方面是由于突飛猛進(jìn)發(fā)展的計(jì)算機(jī)硬件。以下是學(xué)習(xí)啦小編整理分享的關(guān)于人工智能應(yīng)用的論文的相關(guān)文章,歡迎閱讀!

  人工智能應(yīng)用的論文篇一

  人工智能的應(yīng)用研究

  一、人工智能的發(fā)展過(guò)程

  人工智能(AI.Artificial Intelligence)經(jīng)歷了三次飛躍階段:實(shí)現(xiàn)問(wèn)題求解是第一次,代替人進(jìn)行部分邏輯推理工作的完成,如機(jī)器定理證明和專(zhuān)家系統(tǒng);智能系統(tǒng)能夠和環(huán)境交互是第二次,從運(yùn)行的環(huán)境中對(duì)信息進(jìn)行獲取,代替人進(jìn)行包括不確定性在內(nèi)的部分思維工作的完成,通過(guò)自身的動(dòng)作,對(duì)環(huán)境施加影響,并適應(yīng)環(huán)境的變化,如智能機(jī)器人;第三次是智能系統(tǒng),具有類(lèi)人的認(rèn)知和思維能力,能夠發(fā)現(xiàn)新的知識(shí),去完成面臨的任務(wù),如基于數(shù)據(jù)挖掘的系統(tǒng)。

  二、人工智能的研究熱點(diǎn)

  AI研究出現(xiàn)了新的高潮,有兩個(gè)方面的表現(xiàn),一方面在于人工智能理論方面有了新的進(jìn)展,另一方面是由于突飛猛進(jìn)發(fā)展的計(jì)算機(jī)硬件。隨著不斷提高的計(jì)算機(jī)速度、不斷擴(kuò)大的存儲(chǔ)容量、不斷降低的價(jià)格,以及不斷發(fā)展的網(wǎng)絡(luò),很多在以前無(wú)法完成的工作在現(xiàn)在都能夠?qū)崿F(xiàn)。當(dāng)前,智能接口、數(shù)據(jù)挖掘、主體及多主體系統(tǒng)是人工智能研究的三個(gè)熱點(diǎn)。

  (一)智能接口技術(shù)是研究如何使人們能夠方便自然地與計(jì)算機(jī)交流。為了實(shí)現(xiàn)這一目標(biāo),要求計(jì)算機(jī)能夠看懂文字、聽(tīng)懂語(yǔ)言、說(shuō)話(huà)表達(dá),甚至能夠進(jìn)行不同語(yǔ)言之間的翻譯,而這些功能的實(shí)現(xiàn)又依賴(lài)于知識(shí)表示方法的研究。因此,智能接口技術(shù)的研究既有巨大的應(yīng)用價(jià)值,又有基礎(chǔ)的理論意義。目前,智能接口技術(shù)已經(jīng)取得了顯著成果,文字識(shí)別、語(yǔ)音識(shí)別、語(yǔ)音合成、圖像識(shí)別、機(jī)器翻譯及自然語(yǔ)言理解等技術(shù)已經(jīng)開(kāi)始實(shí)用化。

  (二)數(shù)據(jù)挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的實(shí)際應(yīng)用數(shù)據(jù)中提取隱含在其中的、人們事先不知道的、但是又潛在有用的信息和知識(shí)的過(guò)程。數(shù)據(jù)挖掘和知識(shí)發(fā)現(xiàn)的研究目前已經(jīng)形成了三根強(qiáng)大的技術(shù)支柱:數(shù)據(jù)庫(kù)、人工智能和數(shù)理統(tǒng)計(jì)。

  (三)主體系統(tǒng)是具有信念、愿望、意圖、能力、選擇、承諾等心智狀態(tài)的實(shí)體,比對(duì)象的粒度更大,智能性更高,而且具有一定的自主性。主體試圖自治、獨(dú)立地完成任務(wù),而且可以和環(huán)境交互,與其他主體通信,通過(guò)規(guī)劃達(dá)到目標(biāo)。多主體系統(tǒng)主要研究在邏輯上或物理上分離的多個(gè)主體之間進(jìn)行協(xié)調(diào)智能行為,最終實(shí)現(xiàn)問(wèn)題求解。

  三、人工智能的應(yīng)用領(lǐng)域

  今天,AI能力更傾向于應(yīng)用到人類(lèi)或其他動(dòng)物智能的某一或某幾方面,并用自動(dòng)化替代,有時(shí)候也用于對(duì)其進(jìn)行模擬。不過(guò)在有些情況下,這些在高性能計(jì)算機(jī)調(diào)度之下的智能行為遠(yuǎn)遠(yuǎn)比人類(lèi)的行為更為強(qiáng)大。

  (一)路徑查找和路徑規(guī)劃。在最小代價(jià)路徑規(guī)劃和路徑查找系統(tǒng)中,可以使用專(zhuān)門(mén)的技術(shù)——它們中有一些非常靈巧微妙,另一些則僅僅是用蠻力解決——來(lái)模擬對(duì)理解的直覺(jué)迅速轉(zhuǎn)換或者對(duì)普通人大腦生成過(guò)程的識(shí)別,結(jié)果有時(shí)非常令人驚訝!路徑查找就是路徑規(guī)劃問(wèn)題的一種變體。

  為了找到最佳路線(xiàn),我們需要計(jì)算通過(guò)每一個(gè)往返路線(xiàn)的時(shí)間開(kāi)銷(xiāo)。時(shí)間就是金錢(qián);所以,我們更傾向于關(guān)注最小代價(jià)路線(xiàn)。這也適用于飛機(jī)航線(xiàn)的制定,它們需要在不同的城市中逗留或更換航班等等。

  (二)邏輯和不確定性。計(jì)算機(jī)編程就像是使用邏輯磚塊建造一棟房子一樣。事實(shí)上,人工智能編程通常被認(rèn)為有兩種邏輯形式——命題邏輯和形式邏輯——的一種特殊混合應(yīng)用,也被認(rèn)為是一種謂詞演算。更進(jìn)一步說(shuō),編程語(yǔ)言中,我們更是采用了一個(gè)命題邏輯更加專(zhuān)門(mén)化的形式:布爾邏輯或者布爾代數(shù)。

  命題邏輯應(yīng)用于具有真和假兩種狀態(tài)的斷言以及命題領(lǐng)域之中。古典命題邏輯或者布爾邏輯處理的都

  只有兩種狀態(tài):或者為真,或者為假。

  對(duì)象之間 聯(lián)系以及這些聯(lián)系的真假值(布爾形式)在內(nèi)的命題邏輯的一種強(qiáng)化延伸就是謂詞演算(和中學(xué)學(xué)的數(shù)學(xué)計(jì)算毫無(wú)關(guān)系)所包含的。

  但是當(dāng)我們?cè)谶壿嬛惺褂眠@些謂詞的時(shí)候,就算是最復(fù)雜的邏輯語(yǔ)句,我們最終獲得的也只是一個(gè)黑白分明的世界:一個(gè)事物不是真的就是假的。如果一個(gè)事物不是真的也不是假的,那么它一定是不存在的事物。否則,它必然兩者居其一。

  (三)自然 語(yǔ)言處理。在AI 應(yīng)用中最重要的一部分就是自然語(yǔ)言處理。但是,現(xiàn)實(shí)卻是,自然語(yǔ)言處理系統(tǒng)并不能像人類(lèi)那樣能很好地分析這些并沒(méi)有太強(qiáng)邏輯結(jié)構(gòu)地說(shuō)出的以及寫(xiě)出的詞語(yǔ)的含義。不過(guò)這樣有限的功能對(duì)于殘障人士、翻譯系統(tǒng)、詞語(yǔ)處理拼寫(xiě)和語(yǔ)法檢查器來(lái)說(shuō)仍然是非常有用的。

  (四)神經(jīng) 網(wǎng)絡(luò)。一種信息處理結(jié)構(gòu)就是神經(jīng)網(wǎng)絡(luò),對(duì)諸如大腦之類(lèi)的生物學(xué)神經(jīng)系統(tǒng)進(jìn)行嘗試模仿來(lái)進(jìn)行單純數(shù)據(jù)的轉(zhuǎn)換成為信息,就是它的原理。神經(jīng)網(wǎng)絡(luò)由很多相互聯(lián)系的處理小元素:神經(jīng)節(jié)點(diǎn),功能相當(dāng)于一個(gè)大腦神經(jīng)細(xì)胞和神經(jīng)元(synapse)組成,它們相互交互,共同解決具體問(wèn)題。神經(jīng)網(wǎng)絡(luò)上的元素將 輸入模式轉(zhuǎn)換成為輸出模式,而這些輸出模式又同時(shí)可以成為其他神經(jīng)網(wǎng)絡(luò)的輸入模式。神經(jīng)網(wǎng)絡(luò)通過(guò)實(shí)例學(xué)習(xí),這一點(diǎn)和人類(lèi)的做法一樣。神經(jīng)網(wǎng)絡(luò)需要設(shè)置為適用于某些具體應(yīng)用中,比如通過(guò)學(xué)習(xí)過(guò)程識(shí)別圖像。而對(duì)于生命系統(tǒng)本身,我們對(duì)學(xué)習(xí)的過(guò)程涉及到神經(jīng)細(xì)胞之間的突觸聯(lián)系的調(diào)整這一說(shuō)法保留質(zhì)疑。

  四、結(jié)語(yǔ)

  當(dāng)前,大部分AI能力的研究方向是研究如何完整地模擬一個(gè)智能過(guò)程,而不是對(duì)器官所使用的每一個(gè)低級(jí)步驟進(jìn)行再現(xiàn)。一個(gè)極端顯著的示例就是利用數(shù)據(jù)庫(kù)和搜索軟件獲取信息的專(zhuān)家系統(tǒng)。數(shù)據(jù)庫(kù)向大腦提供基本沒(méi)有任何關(guān)聯(lián)的數(shù)據(jù),同時(shí)這些數(shù)據(jù)的傳輸和其在大腦中的存儲(chǔ)形式也毫不相同(科學(xué)家們很清楚這一點(diǎn))。但是很多專(zhuān)家系統(tǒng)還是能夠相當(dāng)好地?fù)?dān)當(dāng)起諸如像內(nèi)科醫(yī)生這樣的專(zhuān)業(yè)角色。當(dāng)然它們也僅僅被應(yīng)用于它們非常熟悉的領(lǐng)域。

下一頁(yè)分享更優(yōu)秀的<<<人工智能應(yīng)用的論文

2415113