初三數(shù)學(xué)有哪些比較好的學(xué)習(xí)方法
初三數(shù)學(xué)有哪些比較好的學(xué)習(xí)方法
只有優(yōu)化了自己的學(xué)習(xí)方法,才能從根源上提高自己的成績(jī),想要初三數(shù)學(xué)學(xué)得好,優(yōu)秀的學(xué)習(xí)方法少不了。下面是小編分享的初三數(shù)學(xué)優(yōu)秀的學(xué)習(xí)方法指導(dǎo),一起來看看吧。
初三數(shù)學(xué)優(yōu)秀的學(xué)習(xí)方法指導(dǎo)
興趣是最好的老師
愛因斯坦說過:“興趣是最好的老師”。學(xué)生只有對(duì)數(shù)學(xué)感興趣,才能把心理活動(dòng)指向和集中在學(xué)習(xí)的對(duì)象上,使感知覺活躍,注意力集中,觀察敏銳,記憶持久而準(zhǔn)確,思維敏銳而豐富,激發(fā)和強(qiáng)化學(xué)習(xí)的內(nèi)在動(dòng)力,從而調(diào)動(dòng)學(xué)習(xí)的積極性。所以說興趣是最好的老師。那么怎樣培養(yǎng)學(xué)習(xí)興趣呢!數(shù)學(xué)學(xué)科由于自身的內(nèi)容局限性,有很多學(xué)生認(rèn)為數(shù)學(xué)天天就是算來算去,一點(diǎn)意思都沒有,所以有些學(xué)生干脆就放棄了這門學(xué)科。所以新東方一對(duì)一韓兵兵老師告訴學(xué)生主動(dòng)去接觸數(shù)學(xué),了解數(shù)學(xué),嘗試著與數(shù)學(xué)做朋友,有時(shí)間找兩道題算一算,解一解,一開始你可能算不對(duì),偶爾算對(duì)一道你會(huì)很高興,會(huì)很有成就感,時(shí)間長(zhǎng)了你的準(zhǔn)確率自然就會(huì)提高,這樣慢慢地你就會(huì)喜歡上它。這和我們玩球是一樣的,比如說你不喜歡玩籃球,但如果你主動(dòng)去接觸它,有時(shí)間就去投投籃,拍拍球,一開始你可能投不進(jìn)去,偶爾投進(jìn)一個(gè),你就會(huì)很高興,時(shí)間長(zhǎng)了,你投進(jìn)的多了,你也就喜歡上籃球了。所以,對(duì)學(xué)習(xí)產(chǎn)生了興趣,學(xué)習(xí)主動(dòng)性自然就會(huì)增強(qiáng),成績(jī)也就會(huì)跟著提高了。
師者,解惑也
在學(xué)校上課時(shí)要認(rèn)真聽老師講課,因?yàn)樯险n老師講授的解題方法往往具有代表性,是最為合理或簡(jiǎn)便的,如果把關(guān)鍵的話語(yǔ)漏掉了,則可能會(huì)造成很大的損失;其次,新課標(biāo)對(duì)學(xué)生在能力方面有了更高的要求,我們要多動(dòng)手實(shí)驗(yàn),一方面可以加深對(duì)知識(shí)的理解,另一方面還可以提高觀察分析推理能力,以上雖是老生常談,但是卻可以讓我們提高學(xué)習(xí)效率,不磨刀背。
學(xué)而不思則罔
思考是學(xué)習(xí)方法的核心和靈魂。思考的源泉是問,在學(xué)習(xí)中應(yīng)注意不要輕易放過任何問題,有了問題也不要急于求人,力求獨(dú)立思考,另外還要特別注意思維的嚴(yán)密性,在解題中如果考慮不周密則顧此失彼,妨礙了數(shù)學(xué)水平的進(jìn)一步提高,不少學(xué)生在教師評(píng)講完試卷總覺得自己懂得解題知識(shí)卻不會(huì)解題,就認(rèn)為自己笨,理解力差,卻沒從自己的學(xué)習(xí)方法去找原因,知識(shí)雖有認(rèn)識(shí)層次,卻還未達(dá)到靈活運(yùn)用層次,因此遇到了些陌生的題目就束手無(wú)策。要真正把握知識(shí),找出知識(shí)的內(nèi)涵和外延,在解題過程中聯(lián)系已學(xué)的有關(guān)知識(shí),構(gòu)思解題思路方法,只有這樣,才能在考試中提高解題效率和準(zhǔn)確性,從而變的得心應(yīng)手。
學(xué)而時(shí)習(xí)之,不亦悅乎
其中我有一位學(xué)生學(xué)習(xí)很刻苦,每天學(xué)習(xí)到很晚,做大量的習(xí)題,但是成績(jī)平平,原因在于他只重視做題的數(shù)量而不重視質(zhì)量,做了很多重復(fù)的題又不善于總結(jié),白白浪費(fèi)時(shí)間做了無(wú)用功。我們不必每一分鐘都學(xué),但是學(xué)習(xí)時(shí)每一分鐘都要有收獲。這就像N個(gè)0相加結(jié)果仍是0,而N個(gè)0.0001相加的結(jié)果就不是0.0001了,所謂積少成多就是這個(gè)道理,尤其是數(shù)學(xué)基礎(chǔ)差的學(xué)生,寧可集中時(shí)間做好幾道題,也不能只貪圖數(shù)量而忽略了質(zhì)量,出現(xiàn)“貪多嚼不爛”的現(xiàn)象。
三人行,必有我?guī)熝?/p>
平時(shí)多與同學(xué)交流,要虛心、多想、多問。博取百家之長(zhǎng)為己用,取其精華、棄其糟粕。其實(shí)好的學(xué)習(xí)方法有很多,各人都有自己的絕招,只要大家互相交流經(jīng)驗(yàn),取長(zhǎng)補(bǔ)短,就一定有收獲。
恒也,衡也
學(xué)習(xí)不但要持之于恒,而且要“持之以衡”。“持之以衡”的意思就是平衡各學(xué)科的學(xué)習(xí)時(shí)間。學(xué)習(xí)最忌諱偏科,“木桶原理”說得好:把成績(jī)看成一個(gè)盛水的木桶,它的側(cè)面有五塊木板,而這個(gè)水桶的容積是由最低的那塊木板決定的,而不是由最高的那塊決定的。所以,在保持優(yōu)勢(shì)科目的同時(shí)要把差補(bǔ)上來,同時(shí)注意不要讓好科目變成差科目。
初三數(shù)學(xué)的提分方法
一、該記的記,該背的背
有的同學(xué)認(rèn)為,數(shù)學(xué)不像英語(yǔ)、史地,要背單詞、背年代、背地名,數(shù)學(xué)靠的是智慧、技巧和推理。我說你只講對(duì)了一半。數(shù)學(xué)同樣也離不開記憶。試想一下,小學(xué)的加、減、乘、除運(yùn)算要不是背熟了“乘法九九表”,你能順利地進(jìn)行運(yùn)算嗎?盡管你理解了乘法是相同加數(shù)的和的運(yùn)算,但你在做9*9時(shí)用九個(gè)9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同樣,是運(yùn)用大家熟記的法則做出來的。同時(shí),數(shù)學(xué)中還有大量的規(guī)定需要記憶,比如規(guī)定(a≠0)等等。因此,我覺得數(shù)學(xué)更像游戲,它有許多游戲規(guī)則(即數(shù)學(xué)中的定義、法則、公式、定理等),誰(shuí)記住了這些游戲規(guī)則,誰(shuí)就能順利地做游戲;誰(shuí)違反了這些游戲規(guī)則,誰(shuí)就被判錯(cuò),罰下。因此,數(shù)學(xué)的定義、法則、公式、定理等一定要記熟,有些最好能背誦,朗朗上口。比如大家熟悉的“整式乘法三個(gè)公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學(xué)敲一敲警鐘,如果背不出這三個(gè)公式,將會(huì)對(duì)今后的學(xué)習(xí)造成很大的麻煩,因?yàn)榻窈蟮膶W(xué)習(xí)將會(huì)大量地用到這三個(gè)公式,特別是初二即將學(xué)的因式分解,其中相當(dāng)重要的三個(gè)因式分解公式就是由這三個(gè)乘法公式推出來的,二者是相反方向的變形。
對(duì)數(shù)學(xué)的定義、法則、公式、定理等,理解了的要記住,暫時(shí)不理解的也要記住,在記憶的基礎(chǔ)上、在應(yīng)用它們解決問題時(shí)再加深理解。打一個(gè)比方,數(shù)學(xué)的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數(shù)學(xué)的定義、法則、公式、定理就很難解數(shù)學(xué)題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數(shù)學(xué)題,甚至是解數(shù)學(xué)難題中得心應(yīng)手。
二、幾個(gè)重要的數(shù)學(xué)思想
1、“方程”的思想
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,初中最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運(yùn)動(dòng)中,路程、速度和時(shí)間三者之間就有一種等量關(guān)系,可以建立一個(gè)相關(guān)等式:速度*時(shí)間=路程,在這樣的等式中,一般會(huì)有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們?cè)谛W(xué)就已經(jīng)接觸過簡(jiǎn)易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個(gè)步驟。如果學(xué)會(huì)并掌握了這五個(gè)步驟,任何一個(gè)一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、簡(jiǎn)單的三角方程;到了高中我們還將學(xué)習(xí)指數(shù)方程、對(duì)數(shù)方程、線性方程組、、參數(shù)方程、極坐標(biāo)方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個(gè)步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實(shí)中的大量實(shí)際應(yīng)用,都需要建立方程,通過解方程來求出結(jié)果。因此,同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進(jìn)而學(xué)好其它形式的方程。
所謂的“方程”思想就是對(duì)于數(shù)學(xué)問題,特別是現(xiàn)實(shí)當(dāng)中碰到的未知量和已知量的錯(cuò)綜復(fù)雜的關(guān)系,善于用“方程”的觀點(diǎn)去構(gòu)建有關(guān)的方程,進(jìn)而用解方程的方法去解決它。
2、“數(shù)形結(jié)合”的思想
大千世界,“數(shù)”與“形”無(wú)處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小這兩個(gè)屬性,就交給數(shù)學(xué)去研究了。初中數(shù)學(xué)的兩個(gè)分支棗-代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是,研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形結(jié)合”是一種趨勢(shì),越學(xué)下去,“數(shù)”與“形”越密不可分,到了高中,就出現(xiàn)了專門用代數(shù)方法去研究幾何問題的一門課,叫做“解析幾何”。在初三,建立平面直角坐標(biāo)系后,研究函數(shù)的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾得上一點(diǎn)邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番,這樣做,不但直觀,而且全面,整體性強(qiáng),容易找出切入點(diǎn),對(duì)解題大有益處。嘗到甜頭的人慢慢會(huì)養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
3、“對(duì)應(yīng)”的思想
“對(duì)應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對(duì)應(yīng)一個(gè)抽象的數(shù)“1”,將兩只眼睛、一對(duì)耳環(huán)、雙胞胎對(duì)應(yīng)一個(gè)抽象的數(shù)“2”;隨著學(xué)習(xí)的深入,我們還將“對(duì)應(yīng)”擴(kuò)展到對(duì)應(yīng)一種形式,對(duì)應(yīng)一種關(guān)系,等等。比如我們?cè)谟?jì)算或化簡(jiǎn)中,將對(duì)應(yīng)公式的左邊,對(duì)應(yīng)a,y對(duì)應(yīng)b,再利用公式的右邊直接得出原式的結(jié)果即。這就是運(yùn)用“對(duì)應(yīng)”的思想和方法來解題。初二、初三我們還將看到數(shù)軸上的點(diǎn)與實(shí)數(shù)之間的一一對(duì)應(yīng),直角坐標(biāo)平面上的點(diǎn)與一對(duì)有序?qū)崝?shù)之間的一一對(duì)應(yīng),函數(shù)與其圖象之間的對(duì)應(yīng)。“對(duì)應(yīng)”的思想在今后的學(xué)習(xí)中將會(huì)發(fā)揮越來越大的作用。
學(xué)好初三數(shù)學(xué)的七個(gè)重視
重視構(gòu)建知識(shí)網(wǎng)絡(luò)
要學(xué)會(huì)構(gòu)建知識(shí)網(wǎng)絡(luò),數(shù)學(xué)概念是構(gòu)建知識(shí)網(wǎng)絡(luò)的出發(fā)點(diǎn),也是數(shù)學(xué)中考考查的重點(diǎn)。因此,我們要掌握好代數(shù)中的數(shù)、式、不等式、方程、函數(shù)、三角比、統(tǒng)計(jì)和幾何中的平行線、三角形、四邊形、圓的概念、分類、定義、性質(zhì)和判定,并會(huì)應(yīng)用這些概念去解決一些問題。
重視夯實(shí)數(shù)學(xué)雙基
在復(fù)習(xí)過程中夯實(shí)數(shù)學(xué)基礎(chǔ),要注意知識(shí)的不斷深化,重視強(qiáng)化題組訓(xùn)練——感悟數(shù)學(xué)思想方法
除了做基礎(chǔ)訓(xùn)練題、平面幾何每日一題外,還可以做一些綜合題,并且養(yǎng)成解題后反思的習(xí)慣。反思自己的思維過程,反思知識(shí)點(diǎn)和解題技巧,反思多種解法的優(yōu)劣,反思各種方法的縱橫聯(lián)系。而總結(jié)出它所用到的數(shù)學(xué)思想方法,并把思想方法相近的題目編成一組,不斷提煉、不斷深化,做到舉一反三、觸類旁通。逐步學(xué)會(huì)觀察、試驗(yàn)、分析、猜想、歸納、類比、聯(lián)想等思想方法,主動(dòng)地發(fā)現(xiàn)問題和提出問題。
重視建立“病例檔案”
準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時(shí)犯的錯(cuò)誤記下來,找出“病因”開出“處方”,并且經(jīng)常地拿出來看看、想想錯(cuò)在哪里,為什么會(huì)錯(cuò),怎么改正,這樣到中考時(shí)你的數(shù)學(xué)就沒有什么“病例”了。我們要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,積累解題經(jīng)驗(yàn)、總結(jié)解題思路、形成解題思想、催生解題靈感、掌握學(xué)習(xí)方法。
重視常用公式技巧
對(duì)經(jīng)常使用的數(shù)學(xué)公式要理解來龍去脈,要進(jìn)一步了解其推理過程,并對(duì)推導(dǎo)過程中產(chǎn)生的一些可能變化自行探究。對(duì)今后繼續(xù)學(xué)習(xí)所必須的知識(shí)和技能,對(duì)生活實(shí)際經(jīng)常用到的常識(shí),也要進(jìn)行必要的訓(xùn)練。例如:1-20的平方數(shù);簡(jiǎn)單的勾股數(shù);正三角形的面積公式以及高和邊長(zhǎng)的關(guān)系;30°、45°直角三角形三邊的關(guān)系……這樣做,一定能更好地掌握公式并勝過做大量習(xí)題,而且往往會(huì)有意想不到的效果。
重視中考動(dòng)向要求
要把握好目前的中考動(dòng)向,特別是近年來上海的中考越來越注重解題過程的規(guī)范和解答過程的完整。在此特別指出的是,有很多學(xué)生認(rèn)為只要解出題目的答案就萬(wàn)事大吉了,其實(shí)只要是有過程的解答題,過程分比最后的答案要重要得多,不要會(huì)做而不得分。
重視掌握應(yīng)試規(guī)律
有關(guān)專家曾對(duì)高考落榜生和高考佼佼者特別是一些地區(qū)的高考“狀元”進(jìn)行過研究和調(diào)查,結(jié)果發(fā)現(xiàn),他們的最大區(qū)別不是智力,而是應(yīng)試中的心理狀態(tài)。也有人曾對(duì)影響考試成功的因素進(jìn)行過調(diào)查,結(jié)果發(fā)現(xiàn),排在第一位的是應(yīng)試中的心態(tài),第二位的是考前狀況,第三位的是學(xué)習(xí)方法,我們最重視的記憶力卻排在第17位。事實(shí)上,側(cè)重對(duì)考生素質(zhì)和能力的考核已經(jīng)是各類考試改革的大趨勢(shì),應(yīng)試中的心態(tài)對(duì)應(yīng)試的成功將日趨重要。具有良好心理狀態(tài)的考生,可以較好地預(yù)防考試焦慮,較好地運(yùn)籌時(shí)間,減少應(yīng)試中的心理?yè)p傷。
猜你感興趣:
1.初中數(shù)學(xué)學(xué)習(xí)方法大全
3.初中數(shù)學(xué)學(xué)習(xí)方法總結(jié)