七年級上冊數(shù)學(xué)《整式的加減》教案精選范文五篇
教育是石,撞擊生命的火花。教育是燈,照亮夜行者踽踽獨(dú)行的路。教育是路,引領(lǐng)人類走向黎明。因?yàn)橛薪逃?,一切才都那么美好,因?yàn)橛薪逃?,人類才有無窮的希望。下面是小編給大家準(zhǔn)備的七年級上冊數(shù)學(xué)《整式的加減》教案精選范文,供大家閱讀參考。
七年級上冊數(shù)學(xué)《整式的加減》教案精選范文一
教學(xué)目標(biāo)和要求:
1.理解同類項(xiàng)的概念,在具體情景中,認(rèn)識同類項(xiàng)。
2.通過小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,培養(yǎng)學(xué)生自主探索知識和合作交流的能力。
3.初步體會數(shù)學(xué)與人類生活的密切聯(lián)系。
教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):理解同類項(xiàng)的概念。
難點(diǎn):根據(jù)同類項(xiàng)的概念在多項(xiàng)式中找同類項(xiàng)。
分層次教學(xué),講授、練習(xí)相結(jié)合。
教學(xué)過程:
一、復(fù)習(xí)引入:
1、創(chuàng)設(shè)問題情境
?、?個人+8個人=
?、?只羊+8只羊=
⑶5個人+8只羊=
(數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際、學(xué)習(xí)實(shí)際,這是新課程標(biāo)準(zhǔn)所賦予的任務(wù)。學(xué)生嘗試按種類、顏色等多種方法進(jìn)行分類,一方面可提供學(xué)生主動參與的機(jī)會,把學(xué)生的注意力和思維活動調(diào)節(jié)到積極狀態(tài);另一方面可培養(yǎng)學(xué)生思維的靈活性,同時體現(xiàn)分類的思想方法。)
2、觀察下列各單項(xiàng)式,把你認(rèn)為相同類型的式子歸為一類。
8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。
由學(xué)生小組討論后,按不同標(biāo)準(zhǔn)進(jìn)行多種分類,教師巡視后把不同的分類方法投影顯示。
要求學(xué)生觀察歸為一類的式子,思考它們有什么共同的特征?
請學(xué)生說出各自的分類標(biāo)準(zhǔn),并且肯定每一位學(xué)生按不同標(biāo)準(zhǔn)進(jìn)行的分類。
(充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進(jìn)行自主學(xué)習(xí)和合作交流,可極大的激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性,滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。)
二、講授新課:
1.同類項(xiàng)的定義:
我們常常把具有相同特征的事物歸為一類。8x2y與-x2y可以歸為一類,2xy2與-可以歸為一類,-mn2、7mn2與0.4mn2可以歸為一類,5a與9a可以歸為一類,還有、0與也可以歸為一類。8x2y與-x2y只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是2,y的指數(shù)都是1;同樣地,2xy2與-也只有系數(shù)不同,各自所含的字母都是x、y,并且x的指數(shù)都是1,y的指數(shù)都是2。
像這樣,所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng)叫做同類項(xiàng)(similar terms)。另外,所有的常數(shù)項(xiàng)都是同類項(xiàng)。比如,前面提到的、0與也是同類項(xiàng)。
通過特征的講述,選擇所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng)作為研究對象,并稱它們?yōu)橥愴?xiàng)。(板書課題:同類項(xiàng)。)
(教師為了讓學(xué)生理解同類項(xiàng)概念,可設(shè)問同類項(xiàng)必須滿足什么條件,讓學(xué)生歸納總結(jié)。)
板書由學(xué)生歸納總結(jié)得出的同類項(xiàng)概念以及所有的常數(shù)項(xiàng)都是同類項(xiàng)。
2.例題:
例1:判斷下列說法是否正確,正確地在括號內(nèi)打“√”,錯誤的打“×”。
(1)3x與3mx是同類項(xiàng)。 ( ) (2)2ab與-5ab是同類項(xiàng)。 ( )
(3)3x2y與-yx2是同類項(xiàng)。 ( ) (4)5ab2與-2ab2c是同類項(xiàng)。 ( )
(5)23與32是同類項(xiàng)。 ( )
(這組判斷題能使學(xué)生清楚地理解同類項(xiàng)的概念,其中第(3)題滿足同類項(xiàng)的條件,只要運(yùn)用乘法交換律即可;第(5)題兩個都是常數(shù)項(xiàng)屬于同類項(xiàng)。一部分學(xué)生可能會單看指數(shù)不同,誤認(rèn)為不是同類項(xiàng)。)
例2:游戲:
規(guī)則:一學(xué)生說出一個單項(xiàng)式后,指定一位同學(xué)回答它的兩個同類項(xiàng)。[來源:學(xué)|科|網(wǎng)Z|X|X|K]
要求出題同學(xué)盡可能使自己的題目與眾不同。
可請回答正確的同學(xué)向大家介紹寫一個單項(xiàng)式同類項(xiàng)的經(jīng)驗(yàn),從而揭示同類項(xiàng)的本質(zhì)特征,透徹理解同類項(xiàng)的概念。
(學(xué)生自行編題是一種創(chuàng)造性的思維活動,它可以改變一味由教師出題的程式化做法,并由編題學(xué)生指定某位同學(xué)回答,可使課堂氣氛活躍,學(xué)生透徹理解知識,這種形式適合初中生的年齡特征。學(xué)生通過一定的嘗試后,能得出只要改變單項(xiàng)式的系數(shù),即可得到其同類項(xiàng),實(shí)際是抓住了同類項(xiàng)概念中的兩個“相同”,從而深刻揭示了概念的內(nèi)涵。)
例3:指出下列多項(xiàng)式中的同類項(xiàng):
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
解:(1)3x與-2x是同類項(xiàng),-2y與3y是同類項(xiàng),1與-5是同類項(xiàng)。
(2)3x2y與-yx2是同類項(xiàng),-2xy2與xy2是同類項(xiàng)。
例4:k取何值時,3xky與-x2y是同類項(xiàng)?
解:要使3xky與-x2y是同類項(xiàng),這兩項(xiàng)中x的次數(shù)必須相等,即 k=2。所以當(dāng)k=2時,3xky與-x2y是同類項(xiàng)。
例5:若把(s+t)、(s-t)分別看作一個整體,指出下面式子中的同類項(xiàng)。
(1)(s+t)-(s-t)-(s+t)+(s-t);
(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
解:略。
(組織學(xué)生口頭回答上面三個例題,例3多項(xiàng)式中的同類項(xiàng)可由教師標(biāo)出不同的下劃線,并運(yùn)用投影儀打出書面解答,為合并同類項(xiàng)作準(zhǔn)備。例4讓學(xué)生明確同類項(xiàng)中相同字母的指數(shù)也相同。例5必須把(s-t)、(s+t)分別看作一個整體。)
(通過變式訓(xùn)練,可進(jìn)一步明晰“同類項(xiàng)”的意義,在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、提高識別能力。)
6.五分鐘測試:
1、請寫出2ab2c3的一個同類項(xiàng).你能寫出多少個?它本身是自己的同類項(xiàng)嗎?
(學(xué)生先在課本上解答,再回答,若有錯誤請其他同學(xué)及時糾正。)
三、課堂小結(jié):[
①理解同類項(xiàng)的概念,會在多項(xiàng)式中找出同類項(xiàng),會寫出一個單項(xiàng)式的同類項(xiàng),會判斷同類項(xiàng)。
?、谶@堂課運(yùn)用到分類思想和整體思想等數(shù)學(xué)思想方法。
?、蹖W(xué)習(xí)同類項(xiàng)的用途是為了簡化多項(xiàng)式,為下一課的合并同類項(xiàng)打下基礎(chǔ)。
(課堂小結(jié)不僅僅是知識點(diǎn)的羅列,應(yīng)使知識條理化、系統(tǒng)化,應(yīng)上升到數(shù)學(xué)思想方法的總結(jié)與運(yùn)用.采用學(xué)生相互補(bǔ)充完善,教師適時點(diǎn)撥的課堂小結(jié)方式,可訓(xùn)練學(xué)生的歸納能力和表達(dá)能力,提高學(xué)生學(xué)習(xí)的積極性和主動性。)
四、課堂作業(yè):
若2amb2m+3n與a2n-3b8的和仍是一個單項(xiàng)式,則m與 n的值分別是______。
板書設(shè)計:
教學(xué)后記:
建立在學(xué)生的認(rèn)知發(fā)展水平上,從學(xué)生已有的生活經(jīng)驗(yàn)出發(fā),通過小組討論,把一些實(shí)物進(jìn)行分類,從而引出同類項(xiàng)這個概念,并通過練習(xí)、游戲、合作交流等學(xué)習(xí)活動讓學(xué)生更清楚地認(rèn)識同類項(xiàng)。在整堂課的教學(xué)活動中充分體現(xiàn)學(xué)生的主體性,向?qū)W生提供充分參與數(shù)學(xué)活動的機(jī)會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能,培養(yǎng)學(xué)生動手、動口、動腦的能力和學(xué)生的合作交流能力。
七年級上冊數(shù)學(xué)《整式的加減》教案精選范文二
教學(xué)目標(biāo)
知識與能力:掌握去括號法則,運(yùn)用法則,能按要求正確去括號.
過程與方法:經(jīng)歷類比帶有括號的有理數(shù)的運(yùn)算,探究、發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.
情感、態(tài)度與價值觀:通過參與探究活動,培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度,體會合作與交流的重要性.
教學(xué)重難點(diǎn)
重點(diǎn):去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡.
難點(diǎn):括號前面是“-”號,去括號時括號內(nèi)各項(xiàng)都變號.
教學(xué)過程
一、復(fù)習(xí)舊知
1. 化簡
-(+5) +(+5) -(-7) +(-7)
2. 去括號
?、?-(3- 7) ② +(3- 7)
二、探索新知
想一想:根據(jù)分配律,你能為下面的式子去括號嗎?
?、?(- a+c) ② - (- a+c)
?、?+(a-b+c) ④ -(a-b+c)
觀察這兩組算式,看看去括號前后,括號里各項(xiàng)的符號有什么變化?
去括號法則:
括號前是“+”號的,把括號和它前面的“+”號去掉,
括號里各項(xiàng)都不改變符號;
括號前是“ - ”號的,把括號和它前面的“ - ”號去掉,
括號里各項(xiàng)都改變符號。
順口溜:
去括號,看符號;是“+”號,不變號;是“-”號,全變號。
三、鞏固練習(xí):
(1)去括號:
a+(b-c)= _______ a- (b-c)= ______
a+(- b+c)= _______ a- (- b+c)= ______
(2)判斷正誤
a-(b+c)=a-b+c ( )
a-(b-c)=a-b-c ( )
2b+(-3a+1)=2b-3a-1 ( )
3a-(3b-c)=3a-3b+c ( )
四、例題學(xué)習(xí):為下面的式子去括號
+3(a - b+c) - 3(a - b+c)
五、課堂檢測:
去括號:
?、?9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)
六、課堂小結(jié)
去括號時應(yīng)注意的事項(xiàng):
(1)、去括號時應(yīng)先判斷括號前面是“+”號還是“-”號。
(2)、去括號后,括號內(nèi)各項(xiàng)符號要么全變號,要么全不變號。
(3)、括號前面是“-”號時,去掉括號后,括號內(nèi)的各項(xiàng)都要改變符號,不能只改變第一項(xiàng)或前幾項(xiàng)的符號。
七、布置作業(yè):
必做題:課本70頁習(xí)題2.2 第2,3題
選做題:課本70頁 習(xí)題2.2 第4題
七年級上冊數(shù)學(xué)《整式的加減》教案精選范文三
教學(xué)目的:
知識與技能目標(biāo):
會進(jìn)行整式加減的運(yùn)算,并能說 明其中 的算理,發(fā) 展有條理的思考及其語言表達(dá)能力。
過程與方法:
通過探索 規(guī)律的問 題,進(jìn)一步體會符號表示的意義,
通過 對整式加減的學(xué)習(xí),深入體會代數(shù)式在實(shí)際生活中的應(yīng)用,它為后面學(xué)習(xí)方程(組)、不等式及函數(shù)等知識打下良好的基礎(chǔ),同時,也使我們體會到數(shù)學(xué)知識的產(chǎn)生來源于實(shí)際生產(chǎn)和生活的需求,反之,它又服務(wù)于實(shí)際生活的方方面面.
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):整式加減的運(yùn)算。
難點(diǎn):探索規(guī)律的猜想。
授課時間:
教學(xué)過程:
?、?創(chuàng)設(shè)現(xiàn)實(shí)情景,引入新課
擺第1個小屋子需要5枚棋子,擺第2個需要 枚棋 子,擺 第3個需要 枚棋子。
按照這樣的方式繼續(xù)擺下去。
(1)擺第10個這樣的小屋子需要 枚棋子
(2)擺第n個這樣的小屋子需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問 題嗎?小組討論。
?、?根據(jù)現(xiàn)實(shí)情景,講授新課
例題講解:
練習(xí):1、計算:
(1)(11x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)
(3)x-(1-2x+x2)+(-1-x2) (4)(8x y-3x2)-5xy-2(3xy-2x2)
2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B
?、?做一做
P11 隨堂練習(xí)
?、?課時小結(jié)
要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進(jìn)行運(yùn)算。
?、?課后作業(yè)
P12習(xí)題1.3:1(2)、(3)、(6),2。
板書設(shè)計:
第二節(jié) 整式的加減(2)
一、旅游中發(fā)現(xiàn)的幾何體
二、生活中常見的幾何體
VI.教學(xué)后記
七年級上冊數(shù)學(xué)《整式的加減》教案精選范文四
(一)教材所處的地位
人教版《數(shù)學(xué)》七年級上冊第二章,本章由數(shù)到式,承前啟后,既是有理數(shù)的概括與抽象,又是整式乘除和其他代數(shù)式運(yùn)算的基礎(chǔ),也是學(xué)習(xí)方程、不等式和函數(shù)的基礎(chǔ)。
(二)單元教學(xué)目標(biāo)
(1)理解并掌握單項(xiàng)式、多項(xiàng)式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。
(2)理解同類項(xiàng)概念,掌握合并同類項(xiàng)的方法,掌握去括號時符號的變化規(guī)律,能正確地進(jìn)行同類項(xiàng)的合并和去括號。在準(zhǔn)確判斷、正確合并同類項(xiàng)的基礎(chǔ)上,進(jìn)行整式的加減運(yùn)算。
(3)理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并同類項(xiàng)、去括號的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算律性質(zhì)在整式的加減運(yùn)算中仍然成立。
(4)能分析實(shí)際問題中的數(shù)量關(guān)系,并列出整式表示 .體會用字母表示數(shù)后,從算術(shù)到代數(shù)的進(jìn)步。
(5)滲透數(shù)學(xué)知識來源于生活,又要為生活而服務(wù)的辯證觀點(diǎn);通過由數(shù)的加減過渡到整式的加減的過程,培養(yǎng)學(xué)生由特殊到一般的思維;體會整式的加減實(shí)質(zhì)上就是去括號,合并同類項(xiàng),結(jié)果總是比原來簡潔,體現(xiàn)了數(shù)學(xué)的簡潔美。
(三)單元教學(xué)的重難點(diǎn)
(1)重點(diǎn):理解單項(xiàng)式、多項(xiàng)式的相關(guān)概念;熟練進(jìn)行合并同類項(xiàng)和去括號的運(yùn)算。
(2)難點(diǎn):準(zhǔn)確地進(jìn)行合并同類項(xiàng),準(zhǔn)確地處理去括號時的符號。
(四)單元教學(xué)思路及策略
(1)注意與小學(xué)相關(guān)內(nèi)容的銜接。
(2)加強(qiáng)與實(shí)際的聯(lián)系。
(3)類比“數(shù)”學(xué)習(xí)“式”,加強(qiáng)知識的內(nèi)在聯(lián)系,重視數(shù)學(xué)思想方法的滲透。
(4)抓住重難點(diǎn)、加強(qiáng)練習(xí)。
(五)學(xué)生學(xué)習(xí)易錯點(diǎn)分析:
(1)忽視單項(xiàng)式的定義,誤認(rèn)為式子 是單項(xiàng)式。
(2)忽視單項(xiàng)式系數(shù)的定義,誤認(rèn)為 的系數(shù)是4.
(3)忽視單項(xiàng)式的次數(shù)的定義,誤認(rèn)為3a的次數(shù)是0.
(4)忽視多項(xiàng)式的定義,誤認(rèn)為 是單項(xiàng)式。
(5)忽視多項(xiàng)式的定義,誤認(rèn)為 的次數(shù)是7.
(6)忽視多項(xiàng)式的項(xiàng)的定義,誤認(rèn)為多項(xiàng)式 的項(xiàng)分別為 .
(7)把多項(xiàng)式的各項(xiàng)重新排列時,忽視要帶它前面的符號。
(8)忽視同類項(xiàng)的定義,誤認(rèn)為2x3y4與-y4x3不是同類項(xiàng)。
(9)合并同類項(xiàng)時,誤把字母的指數(shù)也相加。
(10) 去括號時符號的處理。
(11)兩整式相減時,忽略加括號。
(六)教學(xué)建議:
(1)了解整式并學(xué)好合并同類項(xiàng)的關(guān)鍵是什么?
整式的加減法,實(shí)際上就是合并同類項(xiàng),同類項(xiàng)的概念以及合并同類項(xiàng)的方法,是本章的重點(diǎn),而同類項(xiàng)及其合并是以單項(xiàng)式為基礎(chǔ)的,所以,單項(xiàng)式的概念或意義是完成合并的關(guān)鍵。
(2)單項(xiàng)式與多項(xiàng)式有什么聯(lián)系與區(qū)別?
教材中先講單項(xiàng)式、后講多項(xiàng)式,然后概括為單項(xiàng)式、多項(xiàng)式統(tǒng)稱為整式,對于單項(xiàng)式的系數(shù),僅限于數(shù)字系數(shù)(單項(xiàng)式中的數(shù)字因數(shù)),這點(diǎn)務(wù)求仔細(xì)體會,切不可加以引申,而多項(xiàng)式?jīng)]有系數(shù);對于次數(shù),單項(xiàng)式的次數(shù)指,所有字母的指數(shù)之和,而多項(xiàng)式的次數(shù)是多項(xiàng)式中次數(shù)最高的項(xiàng)(單項(xiàng)式)的次數(shù),需要加以注意的問題是:單項(xiàng)式的系數(shù),包括它前面的符號,不要把常數(shù) 作為字母,單項(xiàng)式x的系數(shù)是1,且單獨(dú)一個數(shù)(零次單項(xiàng)式)或一個字母,也是單項(xiàng)式,對于0也是一個單項(xiàng)式;多項(xiàng)式的每一項(xiàng)都應(yīng)包含它前面得符號;單項(xiàng)式和多項(xiàng)式得分母中不能含有字母。
(3)學(xué)習(xí)合并同類項(xiàng)的方法;
先把同類項(xiàng)分別作上記號,然后根據(jù)合并同類項(xiàng)的法則進(jìn)行合并,合并后把多項(xiàng)式按某一字母降冪或升冪排列;當(dāng)多項(xiàng)式中同類項(xiàng)的系數(shù)互為相反數(shù)時,合并后為0;
(4)什么是合并同類項(xiàng)中要加以注意的“兩同”?
合并同類項(xiàng)是整式加減的基礎(chǔ),深入理解同類項(xiàng)的概念,又是掌握合并同類項(xiàng)的關(guān)鍵,教材中通過一個探究問題(三個填空題)的引入,進(jìn)行比較、歸納,從而得出判斷同類項(xiàng)的 “兩同”標(biāo)準(zhǔn):所含字母相同,并且相同字母的指數(shù)也相同,這樣的項(xiàng)叫做同類項(xiàng)。幾個常數(shù)項(xiàng)也是同類項(xiàng),同類項(xiàng)至少有兩個,單項(xiàng)式不叫同類項(xiàng)。
(5)其它注意事項(xiàng):
?、僬街校缓豁?xiàng)的是單項(xiàng)式,否則是多項(xiàng)式。分母中含有字母的代數(shù)式不是整式,當(dāng)然也不是單項(xiàng)式或多項(xiàng)式。
②單項(xiàng)式的次數(shù)是所有字母的指數(shù)之和;多項(xiàng)式的次數(shù)是多項(xiàng)式中最高次項(xiàng)的次數(shù)。
③單項(xiàng)式的系數(shù)包括它前面的符號,多項(xiàng)式中每一項(xiàng)的系數(shù)也包括它前面的符號。
?、苋ダㄌ枙r,要特別注意括號前面是“-”號的情形。
(七)課時安排:
第1課時 單項(xiàng)式
第2課時 多項(xiàng)式
第3課時 整式的加減(1)------合并同類項(xiàng)
第4課時 整式的加減(2)------去括號
第5課時 整式的加減(3)------一般步驟
第6課時 整式的加減(4)------化簡求值
第7課時 數(shù)學(xué)活動
第8課時 復(fù)習(xí)課
七年級上冊數(shù)學(xué)《整式的加減》教案精選范文五
一、三維目標(biāo)。
(一)知識與技能。
能運(yùn)用運(yùn)算律探究去括號法則,并且利用去括號法則將整式化簡。
(二)過程與方法。
經(jīng)歷類比帶有括號的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學(xué)生觀察、分析、歸納能力。
(三)情感態(tài)度與價值觀。
培養(yǎng)學(xué)生主動探究、合作交流的意識,嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度。
二、教學(xué)重、難點(diǎn)與關(guān)鍵。
1、重點(diǎn):去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡。
2、難點(diǎn):括號前面是—號去括號時,括號內(nèi)各項(xiàng)變號容易產(chǎn)生錯誤。
3、關(guān)鍵:準(zhǔn)確理解去括號法則。
三、教具準(zhǔn)備。
投影儀。
四、教學(xué)過程,課堂引入。
利用合并同類項(xiàng)可以把一個多項(xiàng)式化簡,在實(shí)際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
五、新授。
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為100t+120(t-0.5)千米 ①
凍土地段與非凍土地段相差100t—120(t-0.5)千米 ②
上面的式子①、②都帶有括號,它們應(yīng)如何化簡?
利用分配律,可以去括號,合并同類項(xiàng),得:
100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60