初中數(shù)學(xué)三角形教案有哪些
初中數(shù)學(xué)三角形教案有哪些
教案在今天推行素質(zhì)教育、在教師的教學(xué)活動中起著非常重要的作用。那么初中數(shù)學(xué)三角形教案有哪些?下面是一篇初二數(shù)學(xué)上冊一單元教案,歡迎各位老師和學(xué)生參考!下面是學(xué)習(xí)啦小編分享給大家的初中數(shù)學(xué)三角形教案的資料,希望大家喜歡!
初中數(shù)學(xué)三角形教案一
【學(xué)習(xí)目標(biāo)】
能利用三角形全等解決實際問題,體會數(shù)學(xué)與實際生活的聯(lián)系。
2、能在解決問題的過程中進(jìn)行有條理的思考和表達(dá)。
【學(xué)習(xí)方法】自主探究與小組合作交流相結(jié)合.
【學(xué)習(xí)重難點】有條理的思考和表達(dá)
【學(xué)習(xí)過程】
模塊一 預(yù)習(xí)反饋
學(xué)習(xí)準(zhǔn)備
1.請你在下列各圖中,以最快的速度畫出一個三角形,使它與△ABC全等,比比看誰快!
教材精讀
1.戰(zhàn)士面向碉堡的方向站好,然后調(diào)整帽子,使視線通過帽檐正好落在碉堡的底部;然后,他轉(zhuǎn)過一個角度,保持剛才的姿勢,這時視線落在了自己所在岸的某一點上;接著,他用步測的辦法量出自己與那個點的距離,這個距離就是他與碉堡的距離。你覺得他測的距離準(zhǔn)確嗎?
2.小明在上周末游覽風(fēng)景區(qū)時,看到了一個美的池塘 ,他想知道最遠(yuǎn)兩點A、B之間的距離, 但是他沒有船,不能直接去測。手里只有一根繩子和一把尺子,他怎樣才能測出A、B之間的距離呢?把你的設(shè)計方案在圖上畫出來,并與你的同伴交流你的方案,看看誰是方案更便捷。
方案一:在能夠到達(dá)A、B的空地上取一適當(dāng)點C,連接AC,并延長AC到D,使CD=AC,連接BC,并延長BC到E,使CE=BC,連接ED。則只要測ED的長就可以知道AB的長了
理由: 在△ACB與△DCE中,
AC=CD
∠BCA=∠ECD
BC=CE
AB=DE (全等三角形的 相等)
方案二:如圖,找一點D,使AD⊥BD,延長AD至C,使CD=AD,連結(jié)BC,量BC的長即得AB的長。
解:在Rt∆ADB與Rt∆CDB中
BD=BD (同一條線段)
∠ADB=∠CDB (都是 )
CD=AD ( )
≌∆CDB ( )
∴ BA = BC ( )
模塊二 合作探究
1.1805年,法軍在拿破侖的率領(lǐng)下與德軍在萊茵河畔激戰(zhàn),德軍在萊茵河北岸Q處,如圖所示,因不知河寬,法軍大炮很難瞄準(zhǔn)敵兵營,聰明的拿破侖站在南岸的點O處,調(diào)整好自己的帽子,使視線恰好擦著帽舌邊緣看到對面德軍營Q處,然后他一步一步后退,一直退到自己的視線恰好落在他剛剛站立的點O處,讓士兵丈量他所站位置B與O點的距離,并下令按這個距離炮轟敵兵營,試問:法軍能命中目標(biāo)嗎?請說明理由,用帽舌邊緣視線法還可以怎樣測量,也能測出河岸兩邊OQ的距離?
初中數(shù)學(xué)三角形教案二
教學(xué)目標(biāo)
1.認(rèn)識三角形,了解三角形的意義,認(rèn)識三角形的邊、內(nèi)角、頂點,能用符號語言表示三角形.
2.經(jīng)歷度量三角形邊長的實踐活動中,理解三角形三邊不等的關(guān)系.
3.懂得判斷三條線段可否構(gòu)成一個三角形的方法,并能運用它解決有關(guān)的問題.
4.幫助學(xué)生樹立幾何知識源于客觀實際,用客觀實際的觀念,激發(fā)學(xué)生學(xué)習(xí)的興趣.
重點、難點
重點:
1.對三角形有關(guān)概念的了解,能用符號語言表示三條形.
2.能從圖中識別三角形.
3.通過度量三角形的邊長的實踐活動,從中理解三角形三邊間的不等關(guān)系.
難點:
1.在具體的圖形中不重復(fù),且不遺漏地識別所有三角形.
2.用三角形三邊不等關(guān)系判定三條線段可否組成三角形.
教學(xué)過程
一、看一看
1.投影:圖形見章前P68-69圖.
教師敘述: 三角形是一種最常見的幾何圖形之一.(看條件許可, 可以把古埃及的金字塔、飛機(jī)、飛船、分子結(jié)構(gòu)……的投影,給同學(xué)放映)從古埃及的金字塔到現(xiàn)代的飛機(jī)、上天的飛船,從宏大的建筑如P68-69的圖,到微小的分子結(jié)構(gòu), 處處都有三角形的身影.結(jié)合以上的實際使學(xué)生了解到:我們所研究的“三角形”這個課題來源于實際生活之中.
學(xué)生活動:(1)交流在日常生活中所看到的三角形.
(2)選派代表說明三角形的存在于我們的生活之中.
2.板書:在黑板上老師畫出以下幾個圖形.
(1)教師引導(dǎo)學(xué)生觀察上圖:區(qū)別三條線段是否存在首尾順序相接所組成的.圖(1)三條線段AC、CB、AB是否首尾順序相接.(是)
(2)觀察發(fā)現(xiàn),以上的圖,哪些是三角形?
(3)描述三角形的特點:
板書:“不在一直線上三條線段首尾順次相接組成的圖形叫做三角形”.
教師提問:上述對三角形的描述中你認(rèn)為有幾個部分要引起重視.
學(xué)生回答:
a.不在一直線上的三條線段.
b.首尾順次相接.
二、讀一讀
指導(dǎo)學(xué)生閱讀課本P71,第一部分至思考,一段課文,并回答以下問題:
(1)什么叫三角形?
(2)三角形有幾條邊?有幾個內(nèi)角?有幾個頂點?
(3)三角形ABC用符號表示________.
(4)三角形ABC的邊AB、AC和BC可用小寫字母分別表示為________.
三角形有三條邊,三個內(nèi)角,三個頂點.組成三角形的線段叫做三角形的邊;相鄰兩邊所組成的角叫做三角形的內(nèi)角; 相鄰兩邊的公共端點是三角形的頂點, 三角形ABC用符號表示為△ABC,三角形ABC的三邊,AB可用邊AB的所對的角C的小寫字母c 表示,AC可用b表示,BC可用a表示.
三、做一做
畫出一個△ABC,假設(shè)有一只小蟲要從B點出發(fā),沿三角形的邊爬到C,它有幾種路線可以選擇?各條路線的長一樣嗎?
同學(xué)們在畫圖計算的過程中,展示議論,并指定回答以上問題:
(1)小蟲從B出發(fā)沿三角形的邊爬到C有如下幾條路線.
a.從B→C
b.從B→A→C
(2)從B沿邊BC到C的路線長為BC的長.
從B沿邊BA到A,從A沿邊C到C的路線長為BA+AC.
經(jīng)過測量可以說BA+AC>BC,可以說這兩條路線的長是不一樣的.
四、議一議
1.在用一個三角形中,任意兩邊之和與第三邊有什么關(guān)系?
2.在同一個三角形中,任意兩邊之差與第三邊有什么關(guān)系?
3.三角形三邊有怎樣的不等關(guān)系?
通過動手實驗同學(xué)們可以得到哪些結(jié)論?
三角形的任意兩邊之和大于第三邊;任意兩邊之差小于第三邊.
五、想一想
三角形按邊分可以,分成幾類?按角分呢?
(1)三角形按邊分類如下:
三角形 不等三角形
等腰三角形 底和腰不等的等腰三角形
等邊三角形
(2)三角形按角分類如下:
三角形 直角三角形
斜三角形 銳角三角形
鈍角三角形
六、練一練
有三根木棒長分別為3cm、6cm和2cm,用這木棒能否圍成一個三角形?
分析:(1)三條線段能否構(gòu)成一個三角形, 關(guān)鍵在撿判定它們是否符合三角形三邊的不等關(guān)系,符合即可的構(gòu)成一個三角形,看不符合就不可能構(gòu)成一個三角形.
(2)要讓學(xué)生明確兩條木棒長為3cm和6cm,要想用三根木棒合起來構(gòu)成一個三角形,這第三根木棒的長度應(yīng)介于3cm和8cm之間,由于它的第三根木棒長只有2cm,所以不可能用這三條木棒構(gòu)成一個三角形.
錯導(dǎo):∵3cm+6cm>2cm
∴用3cm、6cm、2cm的木棒可以構(gòu)成一個三角形.
錯因:三角形的三邊之間的關(guān)系為任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,這里3+6>2,沒錯,可6-3不小于2,所以回答這類問題應(yīng)先確定最大邊,然后看小于最大量的兩量之和是否大于最大值,大時就可構(gòu)成,小時就無法構(gòu)成.
七、憶一憶
今天我們學(xué)了哪些內(nèi)容:
1.三角形的有關(guān)概念(邊、角、頂點)
2.會用符號表示一個三角形.
3.通過實踐了解三角形的三邊不等關(guān)系.
八、作業(yè)
1.課本P71練習(xí)1.2,P75練習(xí)7.1 1.2.
2.補(bǔ)充:如圖,線段 、 相交于點 ,能否確定 與 的大小,并加以說明.
初中數(shù)學(xué)三角形教案三
了解三角形的高,并能在具體的三角形中作出它們.
學(xué)習(xí)重點 在具體的三角形中作出三角形的高.
學(xué)習(xí)難點 畫出鈍角三角形的三條高.
疑難預(yù)設(shè) 過三角形的一個頂點A,你能畫出它的對邊BC的垂線嗎?試試看,你準(zhǔn)行!
教學(xué)器材 學(xué)生預(yù)先剪好三種三角形,一副三角板.
學(xué)法設(shè)計及時間分配 個案補(bǔ)充
教學(xué)過程:
過三角形的一個頂點A,你能畫出它的對邊BC的垂線嗎?試試看,你準(zhǔn)行!
從而引出新課:
1、★三角形的高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線,簡稱三角形的高.
如圖,線段AM是BC邊上的高.
∵AM是BC邊上的高,
∴AM⊥BC.
學(xué)法設(shè)計及時間分配 個案補(bǔ)充
做一做:每人準(zhǔn)備一個銳角三角形紙片:
(1)你能畫出這個三角形的高嗎?
你能用折紙的方法得到它嗎?
(2)這三條高之間有怎樣的位置關(guān)系呢?
小組討論交流.
結(jié)論:銳角三角形的三條高在三角形的內(nèi)部且交于一點.
3、議一議:
每人畫出一個直角三角形和一個鈍角三角形.
(1)畫出直角三角形的三條高,并觀察它們有怎樣的位置關(guān)系?
(2)你能折出鈍角三角形的三條高嗎?
你能畫出它們嗎?
(3)鈍角三角形的三條高交于一點嗎?
它們所在的直線交于一點嗎?
小組討論交流.
結(jié)論:
1、直角三角形的三條高交于直角頂點處.
2、鈍角三角形的三條高所在直線交于一點,此點在三角形的外部.
4、練習(xí):
如圖,(1)共有___________個直角三角形;
(2)高AD、BE、CF相對應(yīng)的底分別是_______,_____,____;
(3)AD=3,BC=6,AB=5,BE=4.
則S△ABC=___________,CF=_________,AC=_____________.
學(xué)法設(shè)計及時間分配 個案補(bǔ)充
(1)銳角三角形的三條高在三角形的內(nèi)部且交于一點.
(2)直角三角形的三條高交于直角頂點處.
(3)鈍角三角形的三條高所在直線交于一點,此點在三角形的外部.
1.如圖,在 中畫出高線AD、中線BE、角平分線CF.
2.如圖,(1)(2)和(3)中的三個三角形有什么不同?畫出這三個 三邊上的高 ,
并指出三條高線在各自三角形的什么位置?
小結(jié):
(1)銳角三角形的三條高在三角形的內(nèi)部且交于一點.
(2)直角三角形的三條高交于直角頂點處.
(3)鈍角三角形的三條高所在直線交于一點,此點在三角形的外部.
題
如圖, 中, 是中線, 是角平分線, 是高,填空:
(1) ________ __________;
(2) ________ _________;
綜
合
題
(3) _________ ;
(4) _________________.
拓
展
題 如圖,在 中, , 的高 與 的比是多少?
(友情提示:利用三角形的面積公式)
板書設(shè)計
第一節(jié) 認(rèn)識三角形(4)
1.三角形的高線定義.
2. (1)銳角三角形的三條高在三角形的內(nèi)部且交于一點.
(2)直角三角形的三條高交于直角頂點處.
(3)鈍角三角形的三條高所在直線交于一點,此點在三角形的外部.
教學(xué)反思 值得記憶的
細(xì)節(jié) 銳角三角形和直角三角形的高掌握得較好.
鈍角三角形的高,特別是鈍角邊上的兩條高較差.
值得思考的
猜你喜歡: