初一數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)的歸納
初一數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)的歸納
初一數(shù)學(xué)的有理數(shù)是初中數(shù)學(xué)的一大重點(diǎn),所以想要考好數(shù)學(xué),不能不學(xué)好有理數(shù)。以下是學(xué)習(xí)啦小編分享給大家的初一數(shù)學(xué)有理數(shù)知識(shí)點(diǎn),希望可以幫到你!
初一數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)
一.知識(shí)框架
二.知識(shí)概念
1.有理數(shù):
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);不是有理數(shù);
(2)有理數(shù)的分類:①②
2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的一條直線.
3.相反數(shù):
(1)只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù);0的相反數(shù)還是0;
(2)相反數(shù)的和為0a+b=0a、b互為相反數(shù).
4.絕對(duì)值:
(1)正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;
(2)絕對(duì)值可表示為:或;絕對(duì)值的問題經(jīng)常分類討論;
5.有理數(shù)比大?。?1)正數(shù)的絕對(duì)值越大,這個(gè)數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個(gè)負(fù)數(shù)比大小,絕對(duì)值大的反而小;(5)數(shù)軸上的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
6.互為倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負(fù)倒數(shù).
7.有理數(shù)加法法則:
(1)同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
(2)異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值;
(3)一個(gè)數(shù)與0相加,仍得這個(gè)數(shù).
8.有理數(shù)加法的運(yùn)算律:
(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).
9.有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù);即a-b=a+(-b).
10.有理數(shù)乘法法則:
(1)兩數(shù)相乘,同號(hào)為正,異號(hào)為負(fù),并把絕對(duì)值相乘;
(2)任何數(shù)同零相乘都得零;
(3)幾個(gè)數(shù)相乘,有一個(gè)因式為零,積為零;各個(gè)因式都不為零,積的符號(hào)由負(fù)因式的個(gè)數(shù)決定.
11.有理數(shù)乘法的運(yùn)算律:
(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
12.有理數(shù)除法法則:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù);注意:零不能做除數(shù),.
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時(shí):(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時(shí):(-a)n=an或(a-b)n=(b-a)n.
14.乘方的定義:
(1)求相同因式積的運(yùn)算,叫做乘方;
(2)乘方中,相同的因式叫做底數(shù),相同因式的個(gè)數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;
15.科學(xué)記數(shù)法:把一個(gè)大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.
16.近似數(shù)的精確位:一個(gè)近似數(shù),四舍五入到那一位,就說這個(gè)近似數(shù)的精確到那一位.
17.有效數(shù)字:從左邊第一個(gè)不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個(gè)近似數(shù)的有效數(shù)字.
18.混合運(yùn)算法則:先乘方,后乘除,最后加減.
初一數(shù)學(xué)角的知識(shí)點(diǎn)
角的種類:角的大小與邊的長(zhǎng)短沒有關(guān)系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等于360°的角叫做周角。
負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。
正角:逆時(shí)針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。
對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(zhǎng)線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角?;閷?duì)頂角的兩個(gè)角相等。
還有許多種角的關(guān)系,如內(nèi)錯(cuò)角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)!
初一數(shù)學(xué)幾何圖形分類知識(shí)點(diǎn)
(1)立體幾何圖形可以分為以下幾類:
第一類:柱體;
包括:圓柱和棱柱,棱柱又可分為直棱柱和斜棱柱,棱柱體按底面邊數(shù)的多少又可分為三棱柱、四棱柱、N棱柱;
棱柱體積統(tǒng)一等于底面面積乘以高,即V=SH,
第二類:錐體;
包括:圓錐體和棱錐體,棱錐分為三棱錐、四棱錐以及N棱錐;
棱錐體積統(tǒng)一為V=SH/3,
第三類:球體;
此分類只包含球一種幾何體,
體積公式V=4πR3/3,
其他不常用分類:圓臺(tái)、棱臺(tái)、球冠等很少接觸到。
大多幾何體都由這些幾何體組成。
(2)平面幾何圖形如何分類
a.圓形
b.多邊形:三角形(分為一般三角形,直角三角形,等腰三角形,等邊三角形)、四邊形(分為不規(guī)則四邊形,體形,平行四邊形,平行四邊形又分:矩形,菱形,正方形)、五邊形、六……
注:正方形既是矩形也是菱形。
猜你喜歡:
1.初一數(shù)學(xué)第1章有理數(shù)知識(shí)點(diǎn)總結(jié)
2.初一數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)
3.人教版七年級(jí)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)
4.七年級(jí)數(shù)學(xué)上冊(cè)“有理數(shù)”的知識(shí)點(diǎn)