高中數(shù)學(xué)立體幾何學(xué)習(xí)方法
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法
高中數(shù)學(xué)立體幾何一直是數(shù)學(xué)的一大難點(diǎn)。那么,怎樣才能學(xué)好立體幾何呢?接下來,學(xué)習(xí)啦小編就和大家分享高中數(shù)學(xué)立體幾何學(xué)習(xí)方法,希望對各位有幫助!
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法一
第一要建立空間觀念,提高空間想象力。
從認(rèn)識平面圖形到認(rèn)識立體圖形是一次飛躍,要有一個過程。有的同學(xué)自制一些空間幾何模型并反復(fù)觀察,這有益于建立空間觀念,是個好辦法。有的同學(xué)有空就對一些立體圖形進(jìn)行觀察、揣摩,并且判斷其中的線線、線面、面面位置關(guān)系,探索各種角、各種垂線作法,這對于建立空間觀念也是好方法。此外,多用圖表示概念和定理,多在頭腦中“證明”定理和構(gòu)造定理的“圖”,對于建立空間觀念也是很有幫助的。
第二要掌握基礎(chǔ)知識和基本技能。
要用圖形、文字、符號三種形式表達(dá)概念、定理、公式,要及時不斷地復(fù)習(xí)前面學(xué)過的內(nèi)容。這是因為《立體幾何》內(nèi)容前后聯(lián)系緊密,前面內(nèi)容是后面內(nèi)容的根據(jù),后面內(nèi)容既鞏固了前面的內(nèi)容,又發(fā)展和推廣了前面內(nèi)容。在解題中,要書寫規(guī)范,如用平行四邊形ABCD表示平面時,可以寫成平面AC,但不可以把平面兩字省略掉;要寫出解題根據(jù),不論對于計算題還是證明題都應(yīng)該如此,不能想當(dāng)然或全憑直觀;對于文字證明題,要寫已知和求證,要畫圖;用定理時,必須把題目滿足定理的條件逐一交待清楚,自己心中有數(shù)而不把它寫出來是不行的。要學(xué)會用圖(畫圖、分解圖、變換圖)幫助解決問題;要掌握求各種角、距離的基本方法和推理證明的基本方法——分析法、綜合法、反證法。
第三要不斷提高各方面能力。
通過聯(lián)系實(shí)際、觀察模型或類比平面幾何的結(jié)論來提出命題;對于提出的命題,不要輕易肯定或否定它,要多用幾個特例進(jìn)行檢驗,最好做到否定舉出反面例子,肯定給出證明。歐拉公式的內(nèi)容是以研究性課題的形式給出的,要從中體驗創(chuàng)造數(shù)學(xué)知識。要不斷地將所學(xué)的內(nèi)容結(jié)構(gòu)化、系統(tǒng)化。所謂結(jié)構(gòu)化,是指從整體到局部、從高層到低層來認(rèn)識、組織所學(xué)知識,并領(lǐng)會其中隱含的思想、方法。所謂系統(tǒng)化,是指將同類問題如平行的問題、垂直的問題、角的問題、距離的問題、惟一性的問題集中起來,比較它們的異同,形成對它們的整體認(rèn)識。牢固地把握一些能統(tǒng)攝全局、組織整體的概念,用這些概念統(tǒng)攝早先偶爾接觸過的或是未察覺出明顯關(guān)系的已知知識間的聯(lián)系,提高整體觀念。
要注意積累解決問題的策略。如將立體幾何問題轉(zhuǎn)化為平面問題,又如將求點(diǎn)到平面距離的問題,或轉(zhuǎn)化為求直線到平面距離的問題,再繼而轉(zhuǎn)化為求點(diǎn)到平面距離的問題;或轉(zhuǎn)化為體積的問題。要不斷提高分析問題、解決問題的水平:一方面從已知到未知,另方面從未知到已知,尋求正反兩個方面的知識銜接點(diǎn)——一個固有的或確定的數(shù)學(xué)關(guān)系。要不斷提高反省認(rèn)知水平,積極反思自己的學(xué)習(xí)活動,從經(jīng)驗上升到自動化,從感性上升到理性,加深對理論的認(rèn)識水平,提高解決問題的能力和創(chuàng)造性。
高中數(shù)學(xué)立體幾何學(xué)習(xí)方法二
一、立足課本,夯實(shí)基礎(chǔ)
直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的證明在出學(xué)的時候一般都很復(fù)雜,甚至很抽象。掌握好定理有以下三點(diǎn)好處:
(1)深刻掌握定理的內(nèi)容,明確定理的作用是什么,多用在那些地方,怎么用。
(2)培養(yǎng)空間想象力。
(3)得出一些解題方面的啟示。
在學(xué)習(xí)這些內(nèi)容的時候,可以用筆、直尺、書之類的東西搭出一個圖形的框架,用以幫助提高空間想象力。對后面的學(xué)習(xí)也打下了很好的基礎(chǔ)。
二、培養(yǎng)空間想象力
為了培養(yǎng)空間想象力,可以在剛開始學(xué)習(xí)時,動手制作一些簡單的模型用以幫助想象。例如:正方體或長方體。在正方體中尋找線與線、線與面、面與面之間的關(guān)系。通過模型中的點(diǎn)、線、面之間的位置關(guān)系的觀察,逐步培養(yǎng)自己對空間圖形的想象能力和識別能力。其次,要培養(yǎng)自己的畫圖能力??梢詮暮唵蔚膱D形(如:直線和平面)、簡單的幾何體(如:正方體)開始畫起。最后要做的就是樹立起立體觀念,做到能想象出空間圖形并把它畫在一個平面(如:紙、黑板)上,還要能根據(jù)畫在平面上的“立體”圖形,想象出原來空間圖形的真實(shí)形狀??臻g想象力并不是漫無邊際的胡思亂想,而是以提設(shè)為根據(jù),以幾何體為依托,這樣就會給空間想象力插上翱翔的翅膀。
三、逐漸提高邏輯論證能力
立體幾何的證明是數(shù)學(xué)學(xué)科中任一分之也替代不了的。因此,歷年高考中都有立體幾何論證的考察。論證時,首先要保持嚴(yán)密性,對任何一個定義、定理及推論的理解要做到準(zhǔn)確無誤。符號表示與定理完全一致,定理的所有條件都具備了,才能推出相關(guān)結(jié)論。切忌條件不全就下結(jié)論。其次,在論證問題時,思考應(yīng)多用分析法,即逐步地找到結(jié)論成立的充分條件,向已知靠攏,然后用綜合法(“推出法”)形式寫出。
四、“轉(zhuǎn)化”思想的應(yīng)用
例如:
1.兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線的夾角即過空間任意一點(diǎn)引兩條異面直線的平行線。斜線與平面所成的角轉(zhuǎn)化為直線與直線所成的角即斜線與斜線在該平面內(nèi)的射影所成的角。
2.異面直線的距離可以轉(zhuǎn)化為直線和與它平行的平面間的距離,也可以轉(zhuǎn)化為兩平行平面的距離,即異面直線的距離與線面距離、面面距離三者可以相互轉(zhuǎn)化。而面面距離可以轉(zhuǎn)化為線面距離,再轉(zhuǎn)化為點(diǎn)面距離,點(diǎn)面距離又可轉(zhuǎn)化為點(diǎn)線距離。
3.面和面平行可以轉(zhuǎn)化為線面平行,線面平行又可轉(zhuǎn)化為線線平行。而線線平行又可以由線面平行或面面平行得到,它們之間可以相互轉(zhuǎn)化。同樣面面垂直可以轉(zhuǎn)化為線面垂直,進(jìn)而轉(zhuǎn)化為線線垂直。
4.三垂線定理可以把平面內(nèi)的兩條直線垂直轉(zhuǎn)化為空間的兩條直線垂直,而三垂線逆定理可以把空間的兩條直線垂直轉(zhuǎn)化為平面內(nèi)的兩條直線垂直。
以上這些都是數(shù)學(xué)思想中轉(zhuǎn)化思想的應(yīng)用,通過轉(zhuǎn)化可以使問題得以大大簡化。
五、總結(jié)規(guī)律,規(guī)范訓(xùn)練
立體幾何解題過程中,常有明顯的規(guī)律性。例如:求角先定平面角、三角形去解決,正余弦定理、三角定義常用,若是余弦值為負(fù)值,異面、線面取銳角。對距離可歸納為:距離多是垂線段,放到三角形中去計算,經(jīng)常用正余弦定理、勾股定理,若是垂線難做出,用等積等高來轉(zhuǎn)換。不斷總結(jié),才能不斷高。
還要注重規(guī)范訓(xùn)練,高考中反映的這方面的問題十分嚴(yán)重,不少考生對作、證、求三個環(huán)節(jié)交待不清,表達(dá)不夠規(guī)范、嚴(yán)謹(jǐn),因果關(guān)系不充分,圖形中各元素關(guān)系理解錯誤,符號語言不會運(yùn)用等。這就要求我們在平時養(yǎng)成良好的答題習(xí)慣,具體來講就是按課本上例題的答題格式、步驟、推理過程等一步步把題目演算出來。答題的規(guī)范性在數(shù)學(xué)的每一部分考試中都很重要,在立體幾何中尤為重要,因為它更注重邏輯推理。對于即將參加高考的同學(xué)來說,考試的每一分都是重要的,在“按步給分”的原則下,從平時的每一道題開始培養(yǎng)這種規(guī)范性的好處是很明顯的,而且很多情況下,本來很難答出來的題,一步步寫下來,思維也逐漸打開了。
六、典型結(jié)論的應(yīng)用
在平時的學(xué)習(xí)過程中,對于證明過的一些典型命題,可以把其作為結(jié)論記下來。利用這些結(jié)論可以很快地求出一些運(yùn)算起來很繁瑣的題目,尤其是在求解選擇或填空題時更為方便。對于一些解答題雖然不能直接應(yīng)用這些結(jié)論,但其也會幫助我們打開解題思路,進(jìn)而求解出答案。
看了“高中數(shù)學(xué)立體幾何學(xué)習(xí)方法”的人還看: